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GENERALIZED ENTAILMENTS

Abstract. A semantic relation between a family of sets of formulas and a set
of formulas, dubbed generalized entailment, and its subrelation, called con-
structive generalized entailment, are defined and examined. Entailment con-
strued in the usual way and multiple-conclusion entailment can be viewed as
special cases of generalized entailment. The concept of constructive gener-
alized entailment, in turn, enables an explication of some often used notion
of interrogative entailment, and coincides with inquisitive entailment at the
propositional level. Some interconnections between constructive generalized
entailment and Inferential Erotetic Logic are also analysed.
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1. Basic intuitions

As for logic, entailment is most often conceived of as a relation between
a set of well-formed formulas (wffs for short) on the one hand, and a
single wff on the other. Entailment ensures transmission of truth: a wff
A entailed by a set of wffs X must be true if only all the wffs in X are
true. What ‘must’ means here depends on a logic under consideration,
and similarly for ‘truth.’ The transmission of truth principle falls under
the general schema:

(1.1) for each A: if all the wffs in X are true in A, then A is true in A.

where A stands, depending on a case, for: ‘valuation’ (of an appropriate
kind), ‘model’, ‘intended model’, ‘world of a model’, and so forth.

Entailment understood in the standard way exhibits a kind of asym-
metry: what is entailed is a single wff, while what is entailing it is a set
of wffs. If, for some reasons, you prefer symmetry over the lack of it,
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there are two possible ways of making entailment a relation between sets
of wffs. Let X and Y stand for sets of wffs. One may define entailment
of Y from X by imposing either of the following conditions:

(1.2) for each A: if all the wffs in X are true in A, then all the wffs in

Y are true in A,

(1.3) for each A: if all the wffs in X are true in A, then at least one wff

in Y is true in A.

The condition (1.2) leads to a trivial generalization. Obviously, the
condition is fulfilled if, and only if X entails every wff in Y . But the
case of condition (1.3) is different. A generalization by the condition
(1.3) gives a well-known concept of multiple-conclusion entailment, or
mc-entailment for short.1 One cannot say that mc-entailment is always
definable in terms of entailment. The following observations justify this
claim. First, it happens that a set of wffs is mc-entailed, but no wff in
the set is entailed. This phenomenon shows up even at the elementary
level of classical propositional logic. Here is a simple example. The
singleton set {p ∨ q} mc-entails the set {p, q}, but neither p nor q is
entailed by {p ∨ q}. Second, it is not a general rule that mc-entailment
of Y from X reduces to entailment of

∨

Y (that is, a disjunction of all
the wffs in Y ) from X . It can happen that Y is an infinite set and the
corresponding language lacks infinite disjunctions. More importantly,
there are non-classical logics in which mc-entailment of Y from X holds,
but entailment of

∨

Y from X does not hold (see [21] for examples).

Mc-entailment, however, exhibits a kind of asymmetry with respect
to quantifiers used. As for the condition (1.3), the clause occurring in
the scope of ‘for each A’ involves universal quantifier in the antecedent
and existential quantifier in the consequent. When X mc-entails Y , one
expects from X to consists of truths, while Y is only required to contain

a truth. This quantificational heterogeneity shows that X and Y are
intuitively understood in different manners. A set of wffs can represent
a belief base, but can also represent a search space. It seems natural
to think of a mc-entailed set as representing a search space. On the
other hand, when X mc-entails Y , it seems natural to construe X as a
representative of a (potential) belief base.

1 One can find this concept already in Gentzen [9] and Carnap [3]. Its full
metalogical elaboration is due to Scott [19], and a throughout analysis can be found
in the monograph of Shoesmith and Smiley [20].
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But what if we are after a relation between sets of wffs each of which
represents a search space? At the first step we can consider a relation
between sets of wffs, X and Y , fulfilling the following condition:

(1.4) for each A: if at least one wff in X is true in A, then at least one

wff in Y is true in A .

Generally speaking, condition (1.4) expresses the following intuition: if
truth can be found in a search space X , then truth can be found in the
search space Y .

A natural generalization would be to allow for many search spaces in
the antecedent. Let Φ be a family2 of sets of wffs, and let Y be a set of
wffs. We may require Φ and Y be connected according to the following
principle:

(1.5) for each A: if, for all X ∈ Φ, at least one wff in X is true in A,

then at least one wff in Y is true in A.

Now the intuition is: if truth can be found in all the search spaces that
belong to Φ, then truth can be found in the search space Y as well.

As for condition (1.5), existential quantifier plays the crucial role
both in the antecedent and the consequent. But there is a price: we
have jumped to the level of families of sets. Moreover, homogeneity of
the domain and the range is lost.

1.1. Aims and summary

In this paper we define and investigate two relations between families of
sets of wffs and sets of wffs. We dub the first relation generalized en-

tailment. It is defined and analysed in Section 3. Its definition matches
the intuition expressed by condition (1.5) specified above. As we show,
basic properties of generalized entailment are akin to these of “stan-
dard” entailment. We also show that entailment and mc-entailment can
be viewed as special cases of generalized entailment. Then we prove
that, for any family of non-empty sets of wffs, being entailed (in the
sense of generalized entailment) by the family amounts to being mc-
entailed by each set which contains exactly one representative of every
set that belongs to the family. In Section 4 we define and examine some
subrelation of generalized entailment, which, as we show, deserves the

2 By a family of sets we mean, here and below, a set of sets.
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name constructive generalized entailment. Section 5, generally speak-
ing, is devoted to bridges between constructive generalized entailment,
the logic of questions, and inquisitive semantics. In subsection 5.4 we
show that some notion of interrogative entailment, occurring quite of-
ten in the literature on questions and questioning, can be explicated in
terms of constructive generalized entailment. In subsection 5.3 we point
out that the concepts of reducibility of questions to sets of questions,
elaborated on within Inferential Erotetic Logic, are closely connected
with interrogative entailment explicated in the above-mentioned man-
ner. Constructive generalized entailment is also related to inquisitive
entailment. In subsection 5.4 we prove that inquisitive entailment based
on the (current version of) inquisitive propositional logic InqB and con-
structive generalized entailment based on classical propositional logic
coincide set-theoretically, given that we restrict ourselves to the so-called
sets of resolutions of wffs. Subsection 5.5 describes another link between
constructive generalized entailment and current research in the logic of
questions. We show that the so-called erotetic search scenarios, a formal
tool developed within Inferential Erotetic Logic, are useful in establishing
which sets of wffs are entailed, in the sense of constructive generalized
entailment, by which families of sets of wffs.

2. Logical preliminaries

We consider a formal language for which the concept of well-formed
formula (wff) is defined. We use A, B, C, D as metalanguage variables for
wffs, and X, Y, W, Z, with subscripts if needed, as metalanguage variables
for sets of wffs. The Greek letters Φ, Ψ will refer to families of sets of wffs,
that is, sets of sets of wffs. In the metatheory we assume a version of set
theory that allows both for sets and classes, and incorporates the Axiom
of Choice. We use standard set-theoretic terminology and notation. The
expression “iff” abbreviates “if and only if.”

As for the general semantic framework, we follow here the idea of
[20], yet with some minor adjustments.

Let DL be the set of wffs of a formal language L. A partition of DL

is an ordered pair:

P = 〈TP, UP〉,

where TP ∩ UP = ∅ and TP ∪ UP = DL.
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We assume that the language considered is supplemented with se-
mantics rich enough to define some concept of truth for wffs. The concept
is always relative to some metalogical constructs, such as valuations,
models, matrices, etc. The relevant concept of truth determines the
class of admissible partitions of the language under consideration. The
following examples illustrate this.

Example 1. Let L be the language of classical propositional logic (here-
after: CPL). A Boolean valuation is a function v that assigns a truth
value, 1 or 0, to each propositional variable and is extended to all wffs
in the standard manner by using the Boolean functions corresponding
to the connectives.

A partition P = 〈TP, UP〉 of DL is admissible iff there exists a Boolean
valuation v such that TP = {A ∈ DL : v(A) = 1}.

Thus, for any admissible partition P = 〈TP, UP〉, the set TP comprises
all the wffs which are true in the corresponding Boolean valuation v, and
(as UP = DL \ TP), UP contains the wffs which are false w.r.t. v.

Example 2. We consider the propositional modal logic S4. Let DL be
the set of wffs of the language of (propositional) S4. The concept of
S4-Kripke model, as well as the concept of truth of a wff in a world of
a model, are defined in the standard manner. We write (M, w) |= A for
‘A is true in world w of model M.’

A partition P = 〈TP, UP〉 of DL is admissible iff for some S4-Kripke
model M = 〈W, R, V 〉 and some w ∈ W : TP = {A ∈ DL : (M, w) |= A}.

Example 3. This time we assume that DL is the set of wffs of first-order
logic (hereafter: FOL). The concepts of FOL-model and of truth of a wff
in a FOL-model are defined in the standard manner. By V er(M) we
designate the set of all wffs which are true in a FOL-model M.

A partition P = 〈TP, UP〉 of DL is admissible iff TP = V er(M), for
some FOL-model M.

Classes of admissible admissible partitions of languages different from
these just considered can be defined according to the pattern applied
above.

When P = 〈TP, UP〉 is an admissible partition, we may think of TP

as the set of truths of the partition, and of UP as the set of untruths of
the partition.

Given that the class of admissible partitions is fixed, “standard” en-
tailment, |=, and mc-entailment, ‖=, can be defined by:
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Definition 1 (Entailment). X |= A iff there is no admissible partition
P = 〈TP, UP〉 such that X ⊂ TP and A /∈ TP.

Definition 2 (Mc-entailment). X ‖= Y iff there is no admissible par-
tition P = 〈TP, UP〉 such that X ⊂ TP and Y ∩ TP = ∅.

For example, in the case of CPL we get: X |= A iff v(A) = 1 for
every Boolean valuation v such that v(B) = 1 for any B ∈ X . As for
mc-entailment, we have: X ‖= Y iff for each Boolean valuation v in which
v(B) = 1 for every B ∈ X , there exists A ∈ Y such that v(A) = 1.

In what follows, we assume that the language for which we define
generalized entailment and the remaining concepts, is an arbitrary but
fixed formal language satisfying the general conditions specified in this
section. By admissible partitions we mean admissible partitions of the
language.

3. Generalized entailment

Generalized entailment (g-entailment for short) is a relation between a
family of sets of wffs on the one hand, and a set of wffs on the other.
We use ‖|= as the symbol for g-entailment.

Definition 3 (G-entailment). Φ ‖|= Y iff for each admissible partition
P = 〈TP, UP〉 such that:

(⋆) for each X ∈ Φ : X ∩ TP 6= ∅

it holds that Y ∩ TP 6= ∅.

The proposed definition of g-entailment expresses, in the current con-
ceptual setting, the idea that lies behind condition (1.5) specified in
Section 1 above.

3.1. Some examples

Some examples can be helpful.

Example 4. As for CPL, we have: Φ ‖|= Y iff there is no Boolean valu-
ation v such that:

• for each X ∈ Φ, v(A) = 1 for some A ∈ X , and v(B) = 0 for all
B ∈ Y .

For instance, the following holds (p, q, r, s, t, u are, here and below,
propositional variables):

{{p ∨ q → s ∨ r, p ∨ q → s ∨ t}, {p, q}} ‖|= {s, r, t}.
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Example 5. Consider the case of FOL. We have: Φ ‖|= Y iff for each
FOL-model M:

• if X ∩ V er(M) 6= ∅ for each X ∈ Φ, then Y ∩ V er(M) 6= ∅.

For instance (P, S are one-place predicates, and a, b are individual con-
stants):

{{∃xPx, ∃xSx}, {∀x(Px ∨ Sx → x = a ∨ x = b}} ‖|= {Pa, Pb, Sa, Sb}.

Note that {∀x(Px ∨ Sx → x = a ∨ x = b}} is a singleton set. However,
it is not excluded that Φ contains singleton sets.

3.2. Basic properties of generalized entailment

Recall that ‖|= is a relation between a family of sets of wffs and a set
of wffs. Interestingly enough, ‖|= still behaves in a “consequence-like”
manner.

Proposition 1. Φ ‖|= X for every X ∈ Φ.

Proof. Suppose otherwise. Then there exists an admissible partition,
P, such that both X ∩ TP = ∅ and X ∩ TP 6= ∅. A contradiction.

Proposition 2. If Φ ‖|= Y and Φ ⊂ Ψ, then Ψ ‖|= Y .

Proof. Suppose that Ψ ‖|=/ Y . Thus there exists an admissible parti-
tion, P, such that Y ∩ TP = ∅ and for each Z ∈ Ψ : Z ∩ TP 6= ∅. As
Φ ⊆ Ψ, it follows that Φ ‖|=/ Y .

Proposition 3. If Φ ‖|= Y and Ψ ‖|= X for every X ∈ Φ, then Ψ ‖|= Y .

Proof. Suppose that Ψ ‖|=/ Y . So for some admissible partition, P, we
have Y ∩ TP = ∅ and Z ∩ TP 6= ∅ for any Z ∈ Ψ. Since Ψ ‖|= X for each
X ∈ Φ, it follows that X ∩ TP 6= ∅ for each X ∈ Φ. Hence Y ∩ TP 6= ∅,
as Φ ‖|= Y . A contradiction.

3.2.1. Special cases and cut

Let us introduce:

Definition 4 (Safeset). Y is a safeset iff Y ∩TP 6= ∅ for each admissible
partition P = 〈TP, UP〉.
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A set containing a valid3 wff is a safeset. But there exist safesets
which do not contain valid wffs. For instance, {p, ¬p} is a safeset in
view of CPL.

Clearly, we have:

Corollary 1. A safeset is g-entailed by any family of sets of wffs.

Proposition 4. If ∅ ‖|= Y , then Y is a safeset.

Proof. Assume that ∅ ‖|= Y . Let P be an arbitrary but fixed admissible
partition. The condition (⋆) of Definition 3 is (trivially) true w.r.t. Φ = ∅.
We have:

(⋆′) for each X ∈ ∅: X ∩ TP 6= ∅.

Hence Y ∩ TP 6= ∅. But P is an arbitrary admissible partition.

Thus the empty set g-entails only safesets. But if the empty set is an
element of a family of sets of wffs, the family g-entails any set of wffs.
This is due to:

Proposition 5. If ∅ ∈ Φ, then Φ ‖|= Y for any set of wffs Y .

Proof. Assume that Φ ‖|=/ Y for some set of wffs Y . Thus there exists
an admissible partition, P, for which the following condition holds:

for each X ∈ Φ : X ∩ TP 6= ∅ , (1)

but Y ∩ TP = ∅. However, ∅ ∈ Φ and hence the condition (1) yields:

∅ ∩ TP 6= ∅

which is impossible.

G-entailment has a property akin to cut:

Proposition 6. If Ψ ‖|= X and Φ ∪ {X} ‖|= Y , then Ψ ∪ Φ ‖|= Y .

Proof. Assume that Ψ ‖|= X and Φ ∪ {X} ‖|= Y , but Ψ ∪ Φ ‖|=/ Y .
If follows that there exists an admissible partition P = 〈TP, UP〉 such
that Z ∩ TP 6= ∅ for each Z ∈ Ψ ∪ Φ, and Y ∩ TP = ∅. As Ψ ‖|= X ,
we have X ∩ TP 6= ∅. But Φ ∪ {X} ‖|= Y and hence Y ∩ TP 6= ∅. A
contradiction.

As an immediate consequence of Proposition 6 we get:

Corollary 2. If Φ ‖|= X and Φ ∪ {X} ‖|= Y , then Φ ‖|= Y .

3 A wff A is valid iff A ∈ TP for each admissible partition P = 〈TP,UP〉.
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3.3. Generalized entailment versus entailment and mc-entailment

Both entailment and mc-entailment are definable in terms of g-entail-
ment. However, we need an auxiliary concept.

Definition 5. X̆ =df {{A} : A ∈ X}.

X̆ is thus the family of singleton sets based on the elements of X . The
family X̆ may be called the disperse of set X . Observe that ∅̆ = ∅.

The following holds:

Corollary 3. For every admissible partition P = 〈TP, UP〉: X ⊂ TP iff

for each Z ∈ X̆ : Z ⊂ TP.

Proof. Just notice that X ⊂ TP iff B ∈ TP, for any B ∈ X .

By Corollary 3 we obtain that g-entailment and entailment are linked
in the way described by:

Proposition 7. X |= A iff X̆ ‖|= {A}.

As for mc-entailment, again by Corollary 3, we have:

Proposition 8. X ‖= Y iff X̆ ‖|= Y .

3.4. Generalized entailment and choices

Let us come back to Example 4 presented in Section 3.1. As we remarked,
the following holds:

{{p ∨ q → s ∨ r, p ∨ q → s ∨ t}, {p, q}} ‖|= {s, r, t}.

For brevity, we designate {p ∨ q → s ∨ r, p ∨ q → s ∨ t} by X1, {p, q} by
X2, and {s, r, t} by Y . Thus {X1, X2} ‖|= Y . Now let us consider the
following sets of wffs:

Z1 = {p ∨ q → s ∨ r, p},

Z2 = {p ∨ q → s ∨ r, q},

Z3 = {p ∨ q → s ∨ t, p},

Z4 = {p ∨ q → s ∨ t, q}.

Each Zi, where 1 ¬ i ¬ 4, is a set that contains exactly one representative
of X1 and exactly one representative of X2. Observe that we have:

Zi ‖= Y
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that is, each Zi (1 ¬ i ¬ 4) mc-entails Y . In other words, any set which
contains exactly one representative of X1 and exactly one representative
of X2 mc-entails Y .

The above observation can be generalized and then turned into an
equivalence, but some caution is needed. We have to express in exact
terms the idea of a set which contains exactly one representative of each
set belonging to a previously given family of sets. This can be done in
many ways. In the next section we present a solution which, additionally,
will be used in defining the second central concept of this paper, namely
constructive generalized entailment.

3.4.1. χ
⊗(Φ)-sets and χ(Φ)-sets

We introduce, first, the following technical concept4 (× stands here for
the sign of Cartesian product):

Definition 6.

X⊗ =

{

X × {X} if X 6= ∅,

∅ if X = ∅.

Clearly, we have:

Corollary 4. If X 6= Z, then X⊗ ∩ Z⊗ = ∅.

Definition 7. Φ⊗ =df {X⊗ : X ∈ Φ}.

Obviously, if Φ = ∅, then Φ⊗ = ∅. (To see this it suffices to observe
that {X⊗ : X ∈ ∅} = ∅.) The following holds:

Corollary 5. If Φ⊗ 6= ∅ and ∅ /∈ Φ⊗, then there exists a set γ such

that γ comprises exactly one element 〈A, X〉 of each X⊗ ∈ Φ⊗.

Proof. By the Axiom of Choice (observe that Corollary 4 warrants that
the elements of Φ⊗ are pairwise disjoint).

Our second technical concept is given by:

Definition 8. γ is a χ⊗(Φ)-set iff

1. γ ⊂
⋃

Φ⊗ and
2. for each X⊗ ∈ Φ⊗ such that X⊗ 6= ∅ there exists exactly one

〈A, X〉 ∈ X⊗ such that 〈A, X〉 ∈ γ.

4 I am indebted to Jerzy Pogonowski for his suggestion to use the concept for the
purposes of this paper.
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One can prove (the proof is given in Appendix):

Proposition 9. For each family of sets Φ there exists a χ⊗(Φ)-set.

Definition 9. Let γ be a χ⊗(Φ)-set.

γ1 =df {A : 〈A, X〉 ∈ γ}.

Now we are able to introduce:

Definition 10. Z is a χ(Φ)-set iff Z = γ1 for some χ⊗(Φ)-set γ.

A χ(Φ)-set is a set comprising exactly one representative of each
non-empty set belonging to Φ. One should not confuse the existence of
exactly one representative of each set belonging to a family of sets with
the existence of a system of distinct representatives of the family.5 The
representatives of distinct sets in a χ-set need not be distinct.

Example 6. Let Φ = {X1, X2}, where X1 = {p, q} and X2 = {p, r}.
The following are χ⊗-sets: {〈p, X1〉, 〈p, X2〉}, {〈p, X1〉, 〈r, X2〉}, {〈q, X1〉,
〈p, X2〉}, {〈q, X1〉, 〈r, X2〉}. Thus the family of χ(Φ)-sets comprises: {p},
{p, r}, {p, q}, {q, r}. As for the χ(Φ)-set {p}, p is the representative of
X1 and is the representative of X2.

In the light of Proposition 9, the following holds:

Proposition 10. For each family of sets Φ there exists at least one

χ(Φ)-set.

Let us also note (the proof is given in Appendix):

Proposition 11. Let A ∈ X for some X ∈ Φ. There exists at least one

χ(Φ)-set such that A belongs to this set.

3.4.2. Generalized entailment and χ(Φ)-sets

A χ(Φ)-set can be intuitively understood as a “choice set”: we choose
from each set in Φ its representative. Thus quantifying over all χ(Φ)-
sets amounts to quantifying over all possible choices of this kind. In this
section we show that, for any family of non-empty sets of wffs, being
g-entailed by the family amounts to being mc-entailed by each “choice
set“ associated with the family, that is, by any χ-set of the family.

Theorem 1. Let ∅ /∈ Φ. Then Φ ‖|= Y iff Z ‖= Y for each χ(Φ)-set Z.

5 As it is well-known, a system of distinct representatives  a transversal of a
family of sets  does not always exist; cf. e.g. [23, Chapter 8].



332 Andrzej Wiśniewski

Proof. (⇒) Assume that Φ ‖|= Y . Suppose that that Z ‖=/ Y for some
χ(Φ)-set Z. Thus there exists an admissible partition, P, such that
Z ⊂ TP and Y ∩ TP = ∅.

Assume that Z = ∅. Hence Φ = ∅ or Φ = {∅}. However, by assump-
tion ∅ /∈ Φ. Thus Φ = ∅. As Φ ‖|= Y , by Proposition 4 we get that Y is
a safeset. But Y ∩ TP = ∅. A contradiction.

Now assume that Z 6= ∅. Since Z is a χ(Φ)-set, it contains elements
of each set in Φ (recall that, by assumption, these sets are non-empty).
Hence for each X ∈ Φ we have X ∩ TP 6= ∅. But Y ∩ TP = ∅. It follows
that Φ ‖|=/ Y . A contradiction.

(⇐) Assume that Φ 6= ∅. Suppose that Φ ‖|=/ Y . By assumption, ∅ /∈
Φ. Thus for some admissible partition, P, we have X ∩ TP 6= ∅ for each
X ∈ Φ, and Y ∩ TP = ∅. Recall that, again by assumption, Φ comprises
non-empty sets. We assign to each set X ∈ Φ the corresponding set X∗

by:
X∗ = X ∩ TP

Let Φ∗ be the family of all X∗-sets defined in the above manner. By
Proposition 9, Φ∗ has a χ⊗(Φ∗)-set, say, δ. Observe that δ 6= ∅ and
δ1 ⊂ TP. We define a set γ by:

γ = {〈A, X〉 ∈ Φ⊗ : 〈A, X∗〉 ∈ δ}

It is clear that γ is a χ⊗(Φ)-set. Moreover, γ1 = δ1. So there exists
a χ(Φ)-set, namely γ1, such that γ1 ⊂ TP. Hence Z ‖=/ Y for some
χ(Φ)-set Z.

Finally, assume that Φ = ∅. It follows that ∅ is the only χ(Φ)-set.
Suppose that Φ ‖|=/ Y . Thus there exists an admissible partition, P,
such that Y ∩ TP = ∅. Therefore ∅ ‖=/ Y .

Remark that the assumption ‘∅ /∈ Φ’ is a necessary one. As we have
shown (cf. Proposition 5), a family of sets that includes the empty set
g-entails any set of wffs.

4. Constructive generalized entailment

Let us, again, come back to Example 4 presented in Section 3.1. Let
Φ = {X1, X2}, where X1 = {p∨q → s∨r, p∨q → s∨ t} and X2 = {p, q}.
We have Φ ‖|= {s, r, t}. The respective χ(Φ)-sets are: {p∨q → s∨r, p},
{p ∨ q → s ∨ r, q}, {p ∨ q → s ∨ t, p}, {p ∨ q → s ∨ t, q}. Each χ(Φ)-set
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mc-entails the set {s, r, t}. But observe that no χ(Φ)-set entails a single
wff in {s, r, t}!

However, we also have:

Φ ‖|= {s ∨ r, s ∨ t}.

In this case g-entailment is constructive: for each χ(Φ)-set there exists
a single wff in {s ∨ r, s ∨ t} which is entailed by the χ(Φ)-set. Here is
another example of this kind. Let Ψ = Φ ∪ {¬s}. We have Ψ ‖|= {r, t}.
Each χ(Ψ)-set results from a χ(Φ)-set by adding ¬s. It is easily visible
that any χ(Ψ)-set either entails r or entails t.

Constructive generalized entailment, or cg-entailment for short, is a
relation between a family of sets of wffs and a set of wffs. We use |⋗ as
the symbol for cg-entailment.

Definition 11 (Cg-entailment). Φ |⋗Y iff for each χ(Φ)-set X there
exists A ∈ Y such that X |= A.

Thus Φ |⋗Y holds just in case each χ(Φ)-set entails some wff in Y .
Remark that different χ(Φ)-sets may entail different elements of Y .

By Definition 1 we get:

Corollary 6. Φ |⋗Y iff for each χ(Φ)-set X there exists A ∈ Y such

that for any admissible partition P = 〈TP, UP〉 the following condition

holds:

• if X ⊂ TP, then A ∈ TP.

Clearly, we have:

Corollary 7. If Φ |⋗Y , then Y 6= ∅.

Observe that being a safeset is not sufficient for being cg-entailed by a
family of wffs. For instance, {p, ¬p} is a safeset (w.r.t. CPL), but {p, ¬p}
is not cg-entailed by the singleton family {{p ∨ ¬p}} (again, in CPL).
The situation is different in the case of g-entailment (cf. Corollary 1).

4.1. Basic properties of constructive generalized entailment

Similarly as g-entailment, also cg-entailment behaves in a “consequence-
like” manner.

Proposition 12. Φ |⋗Y for each Y ∈ Φ such that Y 6= ∅.
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Proof. It suffices to observe that if Y ∈ Φ and Y 6= ∅, then each
χ(Φ)-set contains an element of Y .

Proposition 13. If Φ |⋗Y and Φ ⊂ Ψ, then Ψ |⋗Y .

Proof. It suffices to observe that if Φ ⊂ Ψ, then each χ(Ψ)-set has a
subset being a χ(Φ)-set.

Proposition 14. If Φ |⋗Y and Ψ |⋗X for each X ∈ Φ, then Ψ |⋗Y .

Proof. Let W be an arbitrary but fixed χ(Ψ)-set. By assumption,
Ψ |⋗X for each X ∈ Φ. Thus for any X ∈ Φ, the set X(W ) defined by:

X(W ) = {B ∈ X : W |= B}

is non-empty. Let Φ(W ) be the family of all X(W )-sets defined in the
above manner. By Proposition 9, the family Φ(W ) has a χ⊗(Φ(W ))-set,
say, µ. Thus µ1 is a χ(Φ(W ))-set. Moreover, we have W |= D for each
D ∈ µ1.

We define:
θ = {〈C, X〉 ∈ Φ⊗ : 〈C, X(W )〉 ∈ µ}.

Clearly, θ is a χ⊗(Φ)-set and thus θ1 is a χ(Φ)-set. Observe that θ1 = µ1.
As Φ |⋗Y , there exists A ∈ Y such that θ1 |= A. But, since θ1 = µ1, we
have W |= D for each D ∈ θ1. Therefore W |= A. Hence Ψ |⋗Y .

Note, however, that if ∅ ∈ Φ, then, by Corollary 7, it is not the case
that Φ |⋗ ∅.

4.1.1. Constructive generalized entailment and cut

It should be noted that cg-entailment, similarly as g-entailment, has a
feature analogous to cut.

Proposition 15. If Ψ |⋗X and Φ ∪ {X} |⋗Y , then Ψ ∪ Φ |⋗Y .

Proof. Assume that X ∈ Φ. Since Φ ∪ {X} |⋗Y holds, we get Ψ ∪
Φ |⋗Y by Proposition 13.

Assume that X /∈ Φ. Let Z be an arbitrary but fixed χ(Ψ ∪ Φ)-set.
Thus Z = γ1 for some χ⊗(Ψ ∪ Φ)-set γ. We define the following sets:

γΨ = {〈C, W 〉 ∈ γ : W ∈ Ψ}

γΦ = {〈C, W 〉 ∈ γ : W ∈ Φ}

γΨ is a χ⊗(Ψ)-set, and γΦ is a χ⊗(Φ)-set. Thus (γΨ)1 is a χ(Ψ)-set, and
(γΦ)1 is a χ(Φ)-set.
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Since, by assumption, Ψ |⋗X , there exists an element of X , say, A,
such that (γΨ)1 |= A. Let us define:

γ∗
Φ = γΦ ∪ {〈A, X〉}

γ∗
Φ is a χ⊗(Φ∪{X})-set (since X /∈ Φ) and thus (γ∗

Φ)1 is a χ(Φ∪{X})-set.
Clearly, A ∈ (γ∗

Φ)1. By assumption, Φ∪{X} |⋗Y , and hence (γ∗
Φ)1 |= B

for some B ∈ Y . On the other hand, we have:

(γ∗
Φ)1 = (γΦ)1 ∪ {A}

and (γΨ)1 |= A. Hence (γΨ)1 ∪ (γΦ)1 |= B. Since ((γΨ)1 ∪ (γΦ)1) ⊂ Z,
it follows that Z |= B. Therefore Ψ ∪ Φ |⋗Y .

As an immediate consequence of Proposition 15 we get:

Corollary 8. Φ |⋗X and Φ ∪ {X} |⋗Y , then Φ |⋗Y .

4.2. Constructive generalized entailment versus

entailment and generalized entailment

One can prove that entailment of a wff A from a set of wffs X amounts
to cg-entailment of the singleton set {A} from the disperse of X .

Proposition 16. X |= A iff X̆ |⋗ {A}.

Proof. By Corollary 3. Observe that X is the only χ(X̆)-set.

Let us now prove that cg-entailment is a special case of g-entailment.

Proposition 17. If Φ |⋗Y , then Φ ‖|= Y .

Proof. Assume that Φ |⋗Y .
Let ∅ /∈ Φ. Suppose that Φ ‖|=/ Y . By Theorem 1, there exists a

χ(Φ)-set, say, Z, such that Z ‖=/ Y . It follows that there is no A ∈ Y such
that Z |= A and hence it is not the case that Φ |⋗Y . A contradiction.

Let ∅ ∈ Φ. Thus, by Proposition 5, Φ ‖|= Y .

Note that the converse of Proposition 17 does not hold. The example
presented at the beginning of Section 4 illustrates this. Here is another.
We have:

{{p ∨ q}} ‖|= {p, q},

but we do not have:
{{p ∨ q}}|⋗ {p, q}.
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A more sophisticated counterexample is: we have {∅} ‖|= {p, ¬p} (as
{∅} g-entails every set), but we do not have {∅} |⋗ {p, ¬p} (since ∅ is the
only χ({∅})-set, and neither p nor ¬p is entailed by ∅).

However, cg-entailment and g-entailment coincide on singleton sets
provided that ∅ /∈ Φ.

Corollary 9. Let ∅ /∈ Φ. Then Φ ‖|= {A} iff Φ |⋗ {A}.

Proof. By Theorem 1 and the fact that mc-entailment of {A} and
entailment of A coincide.

5. Constructive generalized entailment and questions

Cg-entailment is a relation between a family of sets of wffs and a set of
wffs. One of the possible ways of thinking about non-singleton sets of
wffs in the context of cg-entailment it to regard them as sets of direct

answers to questions.

5.1. Direct answers

In this section we follow an idea which is present in some, but not all
logical theories of questions. The idea is: a question offers a set of
alternatives and the alternatives are expressed by direct answers to the
question. Direct answers, in turn, are these possible answers to a ques-
tion that are “optimal” in the sense that they provide information of
the required kind and, at the same time, provide neither more nor less
information than it is requested.6 Being true is not a prerequisite of
being a direct answer.

Questions can be incorporated into formal languages in many ways
(for overviews, see e.g. [11, 10, 32]). One option is to supplement the vo-
cabulary of an already given formal language with some question/inter-
rogative forming expressions. As an outcome one gets a formal language
which involves (at least) two categories of formulas: declarative well-
formed formulas (hereafter: d-wffs), which are supposed to represent
declaratives, and erotetic formulas7, which, in turn, are supposed to rep-

6 As David Harrah (who introduced the concept) puts it, a direct answer: “gives

exactly what the question calls for. (. . . ) The label ‘direct’ (. . . ) connotes both log-

ical sufficiency and immediacy” ([11, p. 1]). According to Belnap, direct answers:
“are directly and precisely responsive to the question, giving neither more nor less

information than what is called for” ([1, p. 124]).
7 After the Greek word ‘erotema’, which means ‘question.’
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resent questions. For transparency, in what follows we will call erotetic
formulas simply questions. At the next step an assignment is made: once
we have a question (of a formal language), we assign to it a unique set
d-wffs (of the language). The d-wffs assigned to a question are called di-

rect answers to the question. Details of the assignment are unimportant
for the purposes of this paper. Depending on preferences, one can, for
instance, follow Belnap’s theory (cf. [2]), or Kubiński’s theory (cf. [15]),
or the semi-reductionistic approach assumed in Inferential Erotetic Logic
(cf. e.g. [26, Chapter 3] or [30, Chapter 2]). What is important, however,
is that direct answers are thought of as the “optimal” possible answers
to questions considered.

Some specific assumptions. For simplicity, we assume that the empty set
does not constitute the set of direct answers to any question. Moreover,
we assume that each direct answer to a question is a d-wff, and that sets
of direct answers to questions are not singletons (thus any set of direct
answers contains at least two d-wffs).

As for semantics, we will be assuming that the semantic concepts
introduced in Section 2 pertain to d-wffs.

Notation. The letter Q, with of without a subscript or a superscript, is
a metalanguage variable for questions. We write dQ for the set of direct
answers to question Q.

5.2. Constructive generalized entailment and interrogative entailment

Let us, first, introduce the following auxiliary notion.

Definition 12. Let ∆ be a set of questions.

d∆ = {Z : Z = dQ∗ for some Q∗ ∈ ∆}.

By d∆ we thus mean the family of sets of direct answers to questions
belonging to a set of questions ∆.

Consider the following condition:

d∆ |⋗ dQ (2)

The condition (2) is fulfilled just in case each “choice set” associated
with the family d∆ (more precisely, each χ(d∆)-set) entails some direct
answer to question Q. There are many “choice sets” of this kind (as
each question has at least two direct answers), and (2) quantifies over all
such sets. Thus, generally speaking, the claim of condition is: whatever
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direct answers to questions of ∆ you would get (but one to each of them),
Q is answered, in a way depending on the answers just got. Hence
(2) expresses, in the current conceptual setting, one of the intuitions
connected with “interrogative entailment.”8

Now consider the condition:

d∆ ∪ X̆ |⋗ dQ (3)

Observe that any χ(d∆ ∪ X̆)-set contains all the d-wffs that belong to
X . Moreover, it contains exactly one representative of every set of direct
answers to questions that belong to ∆. Hence the intuitive content of
the condition (3) is: whatever direct answers to questions of ∆ you
would get (but one to each of them), Q is answered, on the basis of
X , yet in a way depending on the answers just got. Thus, (3) also
expresses an intuition connected with “interrogative entailment“, namely
interrogative entailment based on a set of d-wffs.

Observe that (2) is a special case of (3), as ∅̆ = ∅. Interrogative
entailment can thus be defined uniformly by:

Definition 13 (Interrogative entailment). Let ∆ be a set of questions
and X be a set of d-wffs.

∆, X |= Q iff d∆ ∪ X̆ |⋗dQ.

When X = ∅, we write ∆ |= Q (recall that ∅̆ = ∅).
Finally, let us consider the conditions:

d∆ |⋗ {A}, (4)

d∆ ∪ X̆ |⋗ {A}, (5)

X̆ |⋗dQ. (6)

The intuitive content of condition (4) is: whatever direct answers to
questions of ∆ you would get, A is the case. Condition (5) expresses
something like: whatever direct answers to questions of ∆ you would
get, A is the case assuming that X consists of truths. Condition (6) can
be read: X resolves Q.

8 Compare the following quotation from Groenendijk and Stokhof [10]: “inter-

rogatives ?φ1 . . . ?φn entail (. . . ) interrogative ?ψ in a model M iff any proposition

which completely answers all of the ?φ1 . . . ?φn in M, also completely answers ?ψ in

M. Logical entailment amounts to entailment in all models.” ([10, p.1090]).
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5.3. Interrogative entailment and reducibility

of questions to sets of questions

Interrogative entailment, explicated in terms of cg-entailment, is closely
connected with the concepts of reducibility of questions to sets of ques-
tions introduced in Inferential Erotetic Logic. Definitions presented be-
low are taken from [24], published in 1994.

Definition 14 (Reducibility). A question Q is reducible to a non-empty
set of questions ∆ iff

1. for each direct answer A to Q, for each question Q∗ of ∆: A mc-
entails the set of direct answers to Q∗,

2. each set made up of direct answers to the questions of ∆ which con-
tains exactly one direct answer to each question of ∆ entails some
direct answer to Q, and

3. no question in ∆ has more direct answers than Q.

Sets made up of direct answers to all the questions of ∆ which contain
exactly one direct answer to each question of ∆ can be identified with
χ(d∆)-sets.9 Given this, the content of clause (2) of the above definition
can be expressed by:

d∆ |⋗dQ

or equivalently by: ∆ |= Q .

Thus reducibility of a question Q to a set of questions ∆ yields interrog-
ative entailment of the question Q from the set of questions ∆.

Reducibility based on a non-empty set of d-wffs is defined by:

Definition 15 (Generalized reducibility). A question Q is reducible to
a non-empty set of questions ∆ on the basis of a non-empty set of d-wffs
X iff

1. for each direct answer A to Q and for each question Q∗ of ∆, the set
X ∪ {A} mc-entails the set of direct answers to Q∗, and

2. for each set Y made up of direct answers to the questions of ∆ which
contains exactly one direct answer to each question of ∆ there is a

9 More precisely, any (set made up of direct answers to the questions of ∆) which
contains exactly one direct answer to each question of ∆ stands in a 1-1 correspon-
dence with some χ⊗(d∆)-set, and the family of χ⊗(d∆)-sets determines the family
of χ(d∆)-sets.
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direct answer B to Q such that B is entailed by the set X ∪ Y , but
B is not entailed by the set X alone, and

3. no question in ∆ has more direct answers than Q.

For reasons analogous to these presented above we may conclude that
reducibility of a question Q, on the basis of a non-empty set of d-wffs
X , to a set of questions ∆ yields interrogative entailment of Q from
∆ enriched with X . Thus results concerning reducibility (generalized
or not) shed some light on interrogative entailment understood in the
sense of Definition 13, and provide information about cg-entailment in
general.10

5.4. Constructive generalized entailment versus

entailment in inquisitive semantics

In this section we point out some affinities between cg-entailment and the
concept of entailment elaborated on within inquisitive semantics. Inquis-
itive semantics conceives entailment as preservation of support. Support,
in turn, is a relation between an information state and a formula. At the
propositional level (the only one which will interest us here) an informa-
tion state is identified with a set of possible worlds. We will concentrate
upon the most basic system of inquisitive semantics, labelled InqB, in its
current version presented by Ivano Ciardelli in [7] and [8].11

The language of InqB is a propositional language over a countable
set of propositional variables. The primitive logical constants are: ⊥, ∧,
→, and \∨; the latter is called inquisitive disjunction. The set of wffs
is defined in the standard manner. A wff of the form A \∨ B can be
intuitively thought of as a question whether A or B. Disjunction, ∨, and
negation, ¬, are defined by:

¬A =df A → ⊥

A ∨ B =df ¬(¬A ∧ ¬B)

A wff is classical if it does not involve an occurrence of \∨.

10 These results are presented in [24, 13, 14, 29].
11 This system differs somehow, syntactically and semantically, from the system

presented previously under the same label (cf. e.g. [6]). The language of the “old”
version of propositional InqB contained only inquisitive disjunction, while in the “new”
version classical disjunction occurs as well (as a defined connective). Moreover, these
versions differ in conceptualizing questions. The basics of the semantics of the “new”
version are much in line proposed in [31].
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A model is a pair 〈W, V 〉, where W is a non-empty set of possible
worlds and V is a valuation function that assigns to a wff and a world
in W either truth, 1, or falsity, 0. A state of a model M = 〈W, V 〉 is a
subset of W; states of a model M will be called below M-states. Let σ
be a M-state. The relation of support, ≻, is defined by (we use p as a
metalanguage variable for propositional variables):

Definition 16 (Support). 1. σ ≻ p iff V (p, w) = 1 for all w ∈ σ,
2. σ ≻ ⊥ iff σ = ∅,
3. σ ≻ A ∧ B iff σ ≻ A and σ ≻ B,
4. σ ≻ A → B iff for all τ ⊂ σ: if τ ≻ A, then τ ≻ B,
5. σ ≻ A \∨B iff σ ≻ A or σ ≻ B.

Truth of a wff in a world w of a model is defined as support by the
singleton set {w}.

As for classical wffs, support by a M-state σ and truth in each world
of the state σ coincide. However, this is not so for wffs which con-
tain inquisitive disjunction. For example, let M = 〈W, V 〉 be a model
such that for some w1, w2 ∈ W we have: V (p, w1) = 1, V (q, w1) = 0,
V (p, w2) = 0, and V (q, w2) = 1. Clearly, p\∨q is true in each world of
the M-state {w1, w2}, but neither p nor q is supported by {w1, w2}, and
thus {w1, w2} does not support p\∨q.

InqB distinguishes between statements and questions at the semantic
level. As for the current version of InqB, a wff A is a statement just in
case it is truth-conditional, that is, for any model M and any M-state
σ, A is supported by σ iff A is true in each world of σ. Classical wffs are
all statements. Questions are those wffs which are not truth-conditional.
Let us stress that the syntax of InqB allows for conjoining questions and
statements by means of connectives.

Entailment in InqB, |=InqB, is defined by:

Definition 17. X |=InqB A iff for each model M and each M-state σ: if
σ ≻ C for all C ∈ X , then σ ≻ A.

Note that X can involve questions, and A can be a question. As for
statements, |=InqB boils down to CPL-entailment.

Proposition 18. Let X be a set of statements, and A be a statement.

Then X |=InqB A iff X |=CPL A.

InqB effectively assigns to each wff a non-empty set of classical/truth-
conditional wffs called its resolutions; the details of the assignment are
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unimportant for our purposes (cf. [7, p. 56]). Generally speaking, the
resolution of a truth-conditional wff is a singleton set which contains the
wff, while resolutions of questions have at least two elements. What is
important, however, is the following fact (we write R(A) for the set of
resolutions of A):

Proposition 19 (Ciardelli [7]). For any wff A, any model M and any

M-state σ: σ ≻ A iff σ ≻ C for some C ∈ R(A).

A resolution function for a set of wffs X is a map f from X to the
set of classical wffs such that for each A ∈ X we have f(A) ∈ R(A). A
set of wffs Y is a resolution of a set of wffs X iff Y is an image of X
under some resolution function. We put:

R(X) = {f [X ] : f is a resolution function for X}.

The following holds:

Theorem 2 (Ciardelli [7]). For any set of wffs X and any wff A: X |=InqB

A iff for every Y ∈ R(X) there is some C ∈ R(A) such that Y |=InqB C.

As resolutions are classical wffs and any classical wff is a statement,
Theorem 2 and Proposition 18 yield:

Corollary 10. For any set of wffs X and any wff A: X |=InqB A iff for

every Y ∈ R(X) there is some C ∈ R(A) such that Y |=CPL C.

One can prove that inquisitive entailment in InqB and cg-entailment
based on CPL are closely connected. In order to show this let us first
introduce the following notion:

ΦR
X = {Z : Z = R(A) for some A ∈ X}.

ΦR
X is thus the family of resolution sets of a set of wffs X .

We need:

Lemma 1. Y ∈ R(X) iff Y is a χ(ΦR
X)-set.

Proof. (⇒) Suppose that Y ∈ R(X). Then for some resolution func-
tion f for X we have Y = f [X ]. Let us consider the following set:

γ = {〈α, β〉 : α = f(A) and β = R(A), for some A ∈ X}

It is easily seen that γ is a χ⊗(ΦR
X)-set. Thus γ1 is a χ(ΦR

X)-set and,
obviously, γ1 = Y .
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(⇐) Assume that Y is a χ(ΦR
X)-set. Thus Y = γ1 for some χ⊗(ΦR

X)-
set γ. Let us define the following function f∗ from γ to the set of classical
wffs:

f∗(〈C, R(A)〉) = C, where 〈C, R(A)〉 ∈ γ.

Next, we define the following function f with the domain X :

f(A) = f∗(〈C, R(A)〉).

Clearly, f is a resolution function for X and Y is the image of X under f .

Thus, by Corollary 10 and Lemma 1, the following is true:

Theorem 3. X |=InqB A iff ΦR
X |⋗CPL R(A).

Therefore a wff A (a statement or a question) is entailed in InqB by
a set of wffs X (which may contain statements and/or questions) just
in case the family of resolution sets of wffs in X cg-entails in CPL the
resolution set of A.

Remark. The connection between inquisitive entailment and cg-entail-
ment established in Theorem 3 rests heavily on a peculiar property of
InqB, namely the existence of resolution sets for wffs. In general, resolu-
tion sets are supposed to be linked with wffs and support in the manner
analogous to that characterized by Proposition 19. However, there exists
inquisitive logics which lack resolution sets for wffs (for details, see [7]).
Thus one cannot say that inquisitive entailment is always reducible to
cg-entailment.

5.5. Constructive generalized entailment and e-scenarios

How can one establish which sets of wffs are cg-entailed by which families
of sets of wffs? As for the classical propositional case, a solution is
suggested by the content of Theorem 3: one can make use of proof
systems for InqB, which enable either Hilbert-style proofs (cf. [5]) or
proofs in the natural deduction format (cf. [7, 8]). The aim of this
section is to show that a certain formal tool developed within Inferential
Erotetic Logic, namely erotetic search scenarios (e-scenarios for short),
can also be helpful. Although the concept of e-scenario was introduced
for different purposes, e-scenarios carry, as we will show, information
about concrete cases of cg-entailment.
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5.6. What are e-scenarios?

For space reasons, we will not explain here intuitions which lie behind
the concept of e-scenario. An interested reader is advised to consult,
e.g., [27], [28], or [30, Part III]. We will provide here only the relevant
definitions.

The general setting needed for defining e-scenarios is that described
in Subsection 5.1 above. Thus we operate with a formal language which
has (at least) two categories of wffs: declarative well-formed formulas
(d-wffs) and questions. We assume some assignment of direct answers
to questions. The “declarative part” of the language is supposed to
be supplemented with a semantics rich enough to define the concepts
of entailment, |=, and mc-entailment, ‖=, for d-wffs. As for the basic
inferential relation for questions, we use the concept of erotetic implica-
tion, being one of the fundamental concepts of Inferential Erotetic Logic.
Again, we provide here only the definition; for intuitions, see e.g. [25],
or [30, chapters 5 and 7].

Definition 18 (Erotetic implication). A question Q implies a question
Q1 on the basis of a set of d-wffs X (in symbols: Im(Q, X, Q1)) iff

1. for each A ∈ dQ : X ∪ {A} ‖= dQ1 and
2. for each B ∈ dQ1 there exists a non-empty proper subset Y of dQ

such that X ∪ {B} ‖= Y .

E-scenarios can be defined either as families of interconnected e-
derivations or as labelled trees. In this paper we choose the first option.
The definitions presented below come from [27], published in 2003.

Definition 19 (E-derivation). A finite sequence s = s1, . . . , sn of wffs
is an erotetic derivation (e-derivation for short) of a direct answer A to
question Q on the basis of a set of d-wffs X iff s1 = Q, sn = A, and the
following conditions hold:

1. for each question sk of s such that k > 1:
(a) dsk 6= dQ,
(b) sk is erotetically implied by some question sj which precedes sk

in s on the basis of the empty set, or on the basis of a non-empty
set of d-wffs such that each element of this set precedes sk in s,
and

(c) sk+1 is either a direct answer to sk or a question;
2. for each d-wff si of s:
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(a) si ∈ X , or
(b) si is a direct answer to si−1, where si−1 6= Q, or
(c) si is entailed by some non-empty set of d-wffs such that each

element of this set precedes si in s;

Note that by “precedes” we do not mean “immediately precedes.”

If s = s1, . . . , sn is an e-derivation of a direct answer to question Q on
the basis of X , each question of s different from Q is called an auxiliary

question of s.

Definition 20 (Query of an e-derivation). A term sk (where 1 < k < n)
of an e-derivation s = s1, . . . , sn is a query of s if sk is a question and
sk+1 is a direct answer to sk.

Queries are thus defined syntactically. Note that an e-derivation can
involve auxiliary questions that are not queries. Generally speaking,
auxiliary questions that are not queries facilitate erotetic implication of
queries. The immediate successors of queries are direct answers to them.

An e-scenario is a set of interconnected e-derivations.

Definition 21 (E-scenario). A finite family Σ of sequences of wffs is an
erotetic search scenario (e-scenario for short) for a question Q relative
to a set of d-wffs X iff each element of Σ is an e-derivation of a direct
answer to Q on the basis of X and the following conditions hold:

1. dQ ∩ X = ∅;
2. Σ contains at least two elements;
3. for each element s = s1, . . . , sn of Σ, for each index k, where 1 ¬ k <

n:
(a) if sk is a question and sk+1 is a direct answer to sk, then for

each direct answer B to sk: the family Σ contains a certain e-
derivation s∗ = s∗

1, s∗
2, . . . , s∗

m such that sj = s∗
j for j = 1, . . . , k,

and s∗
k+1 = B;

(b) if sk is a d-wff, or sk is a question and sk+1 is not a direct answer
to sk, then for each e-derivation s∗ = s∗

1, s∗
2, . . . , s∗

m in Σ such
that sj = s∗

j for j = 1, . . . , k we have sk+1 = s∗
k+1.

The e-derivations which are elements of an e-scenario Σ for Q relative
to X will be called paths of Σ, the question Q will be called the principal

question of Σ, and any other question of Σ is called an auxiliary question

of the e-scenario.
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Clause (3a) expresses the idea of fairness with respect to queries: if
A is a direct answer to a query that immediately succeeds the query on a
path s of an e-scenario Σ, then for any direct answer B to the query that
is different from A there exists a path s∗ of Σ which is identical with s to
the level of the query, and then has B as the immediate successor of the
query. Thus, roughly, for any path and any query on that path there ex-
ists a cluster of related paths which share the query and its predecessors,
but diverge with respect to the direct answers to the query. Thus each di-
rect answer to a query contributes to some path and thus to a derivation
of an answer to the principal question: there are no “dead ends.”

Clause (3b), in turn, expresses the idea of regularity: if sk (k < n) is a
d-wff of a path s = s1, . . . , sn, or sk is a question of s that is not a query,
then each path which is identical with s to the level of sk has the wff
sk+1 as the k +1st term. In other words, d-wffs as well as questions that
are not queries are “used” within a cluster of related paths in a uniform
manner. Hence only queries are “branching points” of e-scenarios.

Definition 22 (Query of e-scenario). A query of an e-scenario is a query
of a path of the e-scenario.

In diagrams of e-scenarios queries are displayed as branching nodes.
Figures 1–3 present examples of e-scenarios. As for examples pre-

sented in figures 1 and 2, we use CPL as the underlying logic of d-wffs,
while the third example is based on FOL. We write ?{A1, . . . , An} for
a question whose set of direct answers is {A1, . . . , An}. For conciseness,
we abbreviate ?{A, ¬A} as ?A. A question whose set of direct answers
is {A ∧ B, A ∧ ¬B, ¬A ∧ B, ¬A ∧ ¬B} is concisely written as ? ± |A, B|.
The letters p, q, r, s, t, u are propositional variables, the letters P, S, T, U

are one-place predicates, and a stands for individual constant. Recall
that e-scenarios can involve auxiliary questions that are not queries.12

One can prove:

Corollary 11. 1. Each query of an e-scenario is a question with a

finite number of direct answers.

2. Each path of an e-scenario involves at least one query.

12 Auxiliary questions that are not queries play no pragmatic role, but are nec-
essary to facilitate erotetic implication of queries. For example, in building the e-
scenario displayed in Figure 3 we make use of the following facts concerning erotetic
implication based on FOL: Im(?Pa,∀x(Px ↔ Sx ∨ (Tx ∧ Ux)), ? ± |Sa, Ta ∧ Ua|),
Im(? ± |Sa, Ta ∧ Ua|, ?Sa), Im(? ± |Sa, Ta ∧ Ua|, ?(Ta ∧ Ua)), Im(?(Ta ∧ Ua), ?{Ta ∧
Ua, Ta ∧ ¬Ua,¬Ta}), Im(?{Ta ∧ Ua, Ta ∧ ¬Ua,¬Ta}, ?Ta), Im(?(Ta ∧ Ua), Ta, ?Ua).
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?{p, q, r}
s → p

¬s → q ∨ r
q ↔ u

?s

s
p

¬s
?q
?u

u
q

¬u
r

Figure 1.

?{p, q, r}
p ∨ q ∨ r

s → p
¬s → ¬r
q ↔ t ∨ u

?s

s
p

¬s
?q

?{t, u, ¬(t ∨ u)}
?t

t
q

¬t
?u

u
q

¬u
p

Figure 2.

Every e-scenario has the first query, shared by all the paths of the
scenario. More precisely, the following holds:

Corollary 12. Let Σ be an e-scenario for Q relative to X . There exist

an index k > 1 and a question Q∗ such that:

1. Q∗ is the k-th term of every path of Σ,
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?Pa

∀x(Px ↔ Sx ∨ (Tx ∧ Ux))
? ± |Sa, Ta ∧ Ua|

?Sa

Sa

Pa

¬Sa

?(Ta ∧ Ua)
?{Ta ∧ Ua, Ta ∧ ¬Ua, ¬Ta}

?Ta

Ta

?Ua

Ua

Ta ∧ Ua

Pa

¬Ua

¬(Ta ∧ Ua)
¬Pa

¬Ta

¬(Ta ∧ Ua)
¬Pa

Figure 3.

2. the k-th term of a path of Σ is a query of the path and hence of Σ,

3. k is the least index of a query of Σ.

For proofs, see [30, Chapter 9].

5.7. Constructive generalized entailment in e-scenarios

E-scenarios are linked with cg-entailment in the way described by the
following:

Theorem 4. Let Σ be an e-scenario for a question Q relative to a set of

d-wffs X , and let ∆ be the set of all queries of Σ. Then d∆ ∪ X̆ |⋗dQ.

Proof. It suffices to show that for each χ(d∆)-set Z there exists a
direct answer A to Q such that Z ∪ X |= A.13 Let Z be an arbitrary but
fixed χ(d∆)-set. Since the number of queries of an e-scenario is always

13 Observe that a χ(d∆ ∪ X̆)-set can be displayed as:

Z ∪X,

where Z is a χ(d∆)-set. More precisely, the following holds:

{Y : Y is a χ(d∆ ∪ X̆)-set} = {Z ∪X : Z is a χ(d∆)-set}.
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finite (as an e-scenario is a finite set of finite sequences of wffs), Z is a
finite set. At the same time, due to Corollary 11, Z is non-empty.

By Corollary 11, Σ has the “first query”. It follows that all the
e-derivations/sequences in Σ share an initial sequent which can be dis-
played as (′ stands here for the concatenation-sign):

Q ′ζ1
′Q1 ,

where ζ1 is a sequence of d-wffs and/or auxiliary questions that are not
queries of Σ (in some cases this sequence can be empty), and Q1 is the
“first” query of Σ. Direct answers to Q1 are immediate successors of Q1

at all the paths of Σ, and each direct answer to Q1 performs this role.
So some element of Z, say, B1, is an immediate successor of Q1 at some
path(s) of Σ.

We act as follows.
First, we remove from Σ all the sequences/e-derivations which do not

have B1 as the immediate successor of Q1. Let us designate the result
of this operation by Σ1.

Σ1 is either a singleton set or has at least two elements (but a finite
number of them, as e-scenarios are finite sets of e-derivations).

It can be easily shown that the following is true:

(†) for each path s of Σ we have:

X ∪ A(s) |= Ds,

where A(s) comprises the terms of s which are immediate successors of
queries of s, that is, the direct answers to the queries which occur at the
path, and Ds is the direct answer to Q which is the last term of s.

Assume that Σ1 is a singleton set, and that s(1) ∈ Σ1. It follows that
no other element of ∆ (besides Q1) occurs at s(1), that is, Q1 is the only
query of s1. Thus A(s(1)) = {B1}. By (†) we get X ∪ {B1} |= Ds

(1)

, and
hence X ∪ Z |= Ds

(1)

as required.
Now assume that Σ1 is not a singleton set. In this case there exists

Q2 ∈ ∆ such that all the sequences in Σ1 share an initial path:

Q ′ζ1
′Q1

′B1
′ζ2

′Q2

Let B2 ∈ Z, i.e., let B2 be the direct answer to Q2 that belongs to Z.
We remove from Σ1 all the paths/e-derivations that do not have B2 as
the immediate successor of Q2. We arrive at a set of paths/e-derivations,
Σ2, which is either a singleton set or not.
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If Σ2 is a singleton set and s(2) ∈ Σ2, we have A(s(2)) = {B1, B2}.
In this case we reason analogously as above, but with respect to s(2).

If Σ2 is not a singleton set, then, again, there exists Q3 ∈ ∆ such
that all the sequences in Γ2 share an initial sequent:

Q ′ζ1
′Q1

′B1
′ζ2

′Q2
′B2

′ζ3
′Q3 .

We take the direct answer to Q3 that occurs in Z and act analogously
as above with respect to the answer taken.

As each path of Σ is a finite sequence and thus involves only a finite
number of occurrences of queries, it is clear that by acting in the above
manner we will arrive, in a finite number of steps, at a singleton set of
paths, say, {s(∗)}. Clearly, A(s(∗)) ⊂ Z. Since, by (†), X ∪ A(s(∗)) |=

Ds
(∗)

, it follows that X ∪ Z |= Ds
(∗)

.

As an immediate consequence of Theorem 4 and Definition 13 we get:

Corollary 13. Let Σ be an e-scenario for a question Q relative to a set

of d-wffs X , and let ∆ be the set of all queries of Σ. Then ∆, X |= Q.

In other words, the set of all queries of an e-scenario for a question
Q relative to a set of d-wffs X interrogatively entails, on the basis of X ,
the question Q.

5.7.1. Examples and comments

Since Theorem 4 holds, the e-scenario displayed in Figure 3 shows that
the following family of sets of wffs:

{{∀x(Px ↔ Sx ∨ (Tx ∧ Ux))}, {Sa, ¬Sa}, {Ta, ¬Ta}, {Ua, ¬Ua}}

(for brevity, let us designate it by Ψ) cg-entails the set of wffs:

{Pa, ¬Pa} (7)

This is the global information we get thanks to the existence of an appro-
priate e-scenario. It is non-trivial. Observe that (7) is a safeset. Recall
that it is not the case that any safeset is cg-entailed by any family of
sets of wffs. But the family Ψ cg-entails the safeset (7), which means
that each “choice set” of Ψ (more precisely, each χ(Ψ)-set) entails some
wff in (7). However, the e-scenario presented in Figure 3 also provides
us more detailed information, namely:

1. Pa is entailed by: (a) any χ(Ψ)-set that contains Sa, or (b) the χ(Ψ)-
set {¬Sa, Ta, Ua};
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– Ask ?Sa first.

– If you receive the answer Sa, the solution is Pa. No further ques-

tion is needed.

– If you receive the answer ¬Sa, ask ?Ta.

– If you receive the answer ¬Ta, the solution is ¬Pa. No further

question is needed.

– If you receive the answer Ta, ask ?Ua.

– If you receive the answer Ua, the solution is Pa.

– If you receive the answer ¬Ua, the solution is ¬Pa.

Figure 4. Knowledge-seeking procedure

2. ¬Pa is entailed by: (a) any χ(Ψ)-set that contains ¬Sa and ¬Ta, or
(b) the χ(Ψ)-set {¬Sa, Ta, ¬Ua}.

The other side of the same coin is: the e-scenario presented in Fig-
ure 3 witnesses the following case of interrogative entailment:

{?Sa, ?Ta, ?Ua}, {∀x(Px ↔ Sx ∨ (Tx ∧ Ux))} |= ?Pa.

The global information is: whatever (direct) answers to questions: ?Sa,
?Ta, ?Ua you would get, question ?Pa is resolved, in a way dependant
on the answers just got. But the e-scenario provides more information:
it shows that in some cases(s) you do not need to ask all the questions
from {?Sa, ?Ta, ?Ua} in order to resolve the entailed question ?Pa, but
only some of them. In particular, the e-scenario displayed in Figure 3
justifies the knowledge-seeking procedure from Figure 4.

Now let us take a look at the e-scenario displayed in Figure 1. For
brevity, we designate the set of wffs {s → p, ¬s → q ∨ r, q ↔ u} by Y .
The e-scenario witnesses the following cases of cg-entailment and inter-
rogative entailment:

Y̆ ∪ {{s, ¬s}, {u, ¬u}} |⋗ {p, q, r},

{?s, ?u}, Y |= ?{p, q, r}.

Observe that {p, q, r} is not a safeset. The additional information carried
by the e-scenario is, roughly, this. Any “choice set“ that contains s entails
p and thus there is no need for asking ?u when s has been received. If,
however, ¬s is the case, then q holds provided that u holds; otherwise r
holds.
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Finally, the e-scenario presented in Figure 2 justifies the following
claims (we designate the set {p∨q ∨r, s → p, ¬s → ¬r, q ↔ t∨u} by Z);

Z̆ ∪ {{s, ¬s}, {t, ¬t}, {u, ¬u}} |⋗ {p, q, r},

{?s, ?t, ?u}, Z |= ?{p, q, r}.

The due comments are similar as in the previous cases, but with one
exception. Observe that there is no path of the e-scenario that leads to
the answer r. On the other hand, the answers p and q can be reached in
multiple ways.

As we have seen, an e-scenario carries global information concerning
cg-entailment and interrogative entailment, but one can also extract from
it some more detailed information useful for problem-solving. The latter
effect is hardly surprising. Problem-solving was the initial, intended area
of applicability of e-scenarios, and they seem quite useful in this field (cf.
e.g. [30, Chapter 13] and [12]). However, it also occurred that e-scenarios
are a powerful tool for modelling some aspects of dialogues (cf. e.g. [17]),
including man-machine dialogue interactions (cf. [16, 18]). E-scenarios
are linked with proof theory as well (see [22, 28]). Recently a dedicated
software which enables, inter alia, automatic generation of e-scenarios
out of a predefined set of e-scenarios, has been designed (cf. [4]). This,
in view of Theorem 4, brings a computational perspective into research
on cg-entailment and/or interrogative entailment.

Appendix

We need:

Corollary 14. If Φ = ∅, then ∅ is the only χ⊗(Φ)-set.

Proof. If Φ = ∅, then Φ⊗ = ∅. Hence clause (2) of Definition 8 is
fulfilled by ∅ (since there is no X⊗ ∈ Φ⊗ such that X⊗ 6= ∅). Clearly,
⋃

∅ = ∅, and ∅ is the only subset of
⋃

Φ⊗.

Corollary 15. If Φ = {∅}, then ∅ is the only χ⊗(Φ)-set.

Proof. ∅ is the only element of Φ. Hence there is no X⊗ ∈ Φ⊗ such
that X⊗ 6= ∅.

Corollary 16. If Φ 6= ∅ and Φ 6= {∅}, then Φ⊗ 6= ∅.

Proof. If Φ 6= ∅ and Φ 6= {∅}, then there exists X ∈ Φ such that
X 6= ∅. Clearly, X⊗ 6= ∅. On the other hand, X⊗ ∈ Φ⊗.
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Now we are ready to prove:

Proposition 9. For each family of sets Φ there exists a χ⊗(Φ)-set.

Proof. If Φ = ∅ or Φ = {∅}, then ∅ is the only χ⊗(Φ)-set. If Φ 6= ∅ and
Φ 6= {∅}, then Φ⊗ 6= ∅, at least element of Φ⊗ is a non-empty set, and
all the elements of Φ⊗ are disjoint. Assume that ∅ /∈ Φ⊗. The existence
of χ⊗(Φ)-set is now warranted by Corollary 5. Assume that ∅ ∈ Φ⊗.
Thus ∅ ∈ Φ. Since, by assumption, Φ 6= {∅}, we move to Ψ = Φ \ {∅}.
Clearly, the sets in Ψ⊗ are non-empty and disjoint. Thus, by Corollary
5 again, there exists a χ⊗(Ψ)-set, say, γ. But, obviously, γ is also a
χ⊗(Φ)-set.

Proposition 11. Let A ∈ X for some X ∈ Φ. There exists at least one

χ(Φ)-set Z such that A ∈ Z.

Proof. The family Φ can be displayed as the union of the following
families of sets:

Φ1 = {X ∈ Φ : A ∈ X},

Φ2 = {X ∈ Φ : A /∈ X},

where Φ1 ∩ Φ2 = ∅. By Proposition 9, there exists a χ⊗(Φ2)-set, say, γ.
Let us define a set δ by the condition:

〈B, Y 〉 ∈ δ iff B = A and Y ∈ Φ1

Let θ = γ ∪ δ. As Φ1 ∩ Φ2 = ∅, we also have γ ∩ δ = ∅. It is easily
seen that γ ∪ δ is a χ⊗(Φ)-set. Thus (γ ∪ δ)1 is a χ(Φ)-set. Obviously,
A ∈ (γ ∪ δ)1.
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