A Right-sided Socratic Calculus for Classical Logic

Research Report¹

0. Aims

The aim of this paper is to present a certain erotetic calculus for first-order logic. This calculus is an alternative to the calculus E^{PQ} presented in Wiśniewski and Shangin (2006). The most important feature of the current calculus is that it operates on right-sided sequents only. The right-sided approach is natural when modal logics are analyzed in an erotetic setting (see Leszczyńska 2004, 2006). The propositional part of our calculus (never presented in a written form, but communicated during some meetings) constitutes the background for the appropriate modal Socratic calculi.

1. Syntax and Semantics. Terminology and Notation

We use the language L of Pure Calculus of Quantifiers, described in Wiśniewski and Shangin (2006), as the point of departure. The vocabulary of L includes parameters, but these do not occur in the so-called pure sentences, by means of which laws of logic can be expressed. We introduce an "erotetic" language, L^{**} , which resembles the erotetic language L^* for E^{PQ} ; both languages have *declarative well-formed formulas* (d-wffs) and *questions* as meaningful expressions, and are built according to a common pattern. The only substantial difference lies in the fact that we now consider right-sided sequents (and only them) as 'bricks', out of which both d-wffs and questions of L^{**} are constructed. A *right-sided sequent* is an expression of the form:

(1)
$$+ S$$

where S is a non-empty finite sequence of sentences (*i.e.* closed well-formed formulas) of L. Note that a right-sided sequent *is not* an expression of L. In practice, we will be writing $|A_1, ..., A_n$ instead of $|A_1, ..., A_n >$. A sequent is *pure* if it involves only parameter-free sentences. The remaining syntactic and semantic concepts are defined accordingly; we use the terminology and notation of (Wiśniewski and Shangin, 2006).

A sequent of the form $\models S$ is valid iff there is no model of L in which all the elements of S are false. Thus $\models A_1, ..., A_n$ is valid iff $A_1 \lor (A_2 \lor ... \lor (A_{n-1} \lor A_n)...))$ is valid.

2. The Calculus E^{RPQ}

We shall coin our new calculus with the name $\mathbf{E}^{\mathbf{RPQ}}$. However, before we present it, let us remind some notational conventions used in the presentation of "old" erotetic calculus for Pure Calculus of Quantifiers, *i.e.* $\mathbf{E}^{\mathbf{PQ}}$.

α	α_1	α_2		β	β_1	β_2	β_1 *
$A \wedge B$	Α	В		$\neg (A \land B)$	$\neg A$	$\neg B$	Α
$\neg (A \lor B)$	$\neg A$	$\neg B$		$A \lor B$	Α	В	$\neg A$
$\neg (A \rightarrow B)$	Α	$\neg B$		$A \rightarrow B$	$\neg A$	В	A
Table 1.							

¹ This research was sponsored by the Foundation For Polish Science. The first draft was ready in 2005; the current version includes some additions (mainly bibliographical) and improvements added in 2006. I am indebted to Vasilyi Shangin for useful comments.

к	ĸ
$\neg \neg A$	A
$\neg \exists x_i A$	$\forall x_i \neg A$
$\neg \forall x_i A$	$\exists x_i \neg A$
$\forall x_i A$, provided that x_i is not free in A	A
$\exists x_i A$, provided that x_i is not free in A	A

	7.1.1.	2
1	anle	Ζ.

 $\mathbf{E}^{\mathbf{PQ}}$ is a calculus of *questions*, and the inferential rules of the calculus transform a question into a question. A question of the language L^* is an expression of the form:

$$(2) \qquad ? (S_1 \models A_1, \ldots, S_n \models A_n)$$

where $n \ge 1, S_1, ..., S_n$ are finite (possibly empty) sequences of sentences of L, and $A_1, ..., A_n$ are sentences of L. Thus a question of L^* is based on a finite sequence of single-conclusioned sequents (these are expressions of L^* , not of L !). A sequent occurring is a question is called a *constituent* of the question. An intuitive reading of a question of the form (2) is: "*Is it the case that*: $S_1 \models A_n$ *is FOL-valid and* ... *and* $S_n \models A_n$ *is FOL-valid*?", where the concept of First-Order Logic (FOL) validity of a sequent is understood in the standard manner. Thus a question asks about *joint validity* of sequents. A metalinguistic expression of the form:

(3)
$$\Phi; S \models A$$

refers to a sequence of sequents which is the concatenation of a finite (possibly empty) sequence of sequents Φ and the one-term sequence $\langle S \mid A \rangle$. Similarly, an expression of the form:

(4) $\Phi; S \models A; \Psi$

represents the concatenation of Φ ; $S \models A$ and a finite (possibly empty) sequence of sequents Ψ . The sign ' is the concatenation-sign for sequences of sentences of L. By S A we mean the concatenation of a sequence S of sentences of L and the one-term sequence $\langle A \rangle$, where A is a sentence of L. The reading of a metalinguistic inscription of the form S A T is analogous to that of (4). Both S and T can be empty.

We remind the (primary) inferential rules of E^{PQ} :

$$\begin{split} \mathbf{L}_{\alpha} &: \qquad \frac{?\left(\Phi; \ S \ '\alpha \ 'T \ \models \ C; \ \Psi\right)}{?\left(\Phi; \ S \ '\alpha_{1} \ '\alpha_{2} \ 'T \ \models \ C; \ \Psi\right)} & \mathbf{R}_{\alpha} &: \qquad \frac{?\left(\Phi; \ S \ \models \ \alpha; \ \Psi\right)}{?\left(\Phi; \ S \ \models \ \alpha_{1}; \ S \ \models \ \alpha_{2}; \ \Psi\right)} \\ \mathbf{L}_{\beta} &: \qquad \frac{?\left(\Phi; \ S \ \beta \ 'T \ \models \ C; \ \Psi\right)}{?\left(\Phi; \ S \ \beta_{1} \ 'T \ \models \ C; \ \Psi\right)} & \mathbf{R}_{\beta} &: \qquad \frac{?\left(\Phi; \ S \ \models \ \alpha_{1}; \ S \ \models \ \alpha_{2}; \ \Psi\right)}{?\left(\Phi; \ S \ \models \ \beta; \ \Psi\right)} \\ \mathbf{L}_{\kappa} &: \qquad \frac{?\left(\Phi; \ S \ \beta \ 'T \ \models \ C; \ \Psi\right)}{?\left(\Phi; \ S \ '\kappa \ 'T \ \models \ C; \ \Psi\right)} & \mathbf{R}_{\kappa} &: \qquad \frac{?\left(\Phi; \ S \ \models \ \beta; \ \Psi\right)}{?\left(\Phi; \ S \ \beta_{1} \ \ast \ \mu\right)} \\ \mathbf{L}_{\kappa} &: \qquad \frac{?\left(\Phi; \ S \ '\kappa \ 'T \ \models \ C; \ \Psi\right)}{?\left(\Phi; \ S \ '\kappa \ 'T \ \models \ C; \ \Psi\right)} & \mathbf{R}_{\kappa} &: \qquad \frac{?\left(\Phi; \ S \ \models \ \kappa; \ \Psi\right)}{?\left(\Phi; \ S \ \models \ \kappa; \ \Psi\right)} \end{split}$$

\mathbf{L}_{\forall} :	? (Φ ; $S \forall x_i A T \models B; \Psi$)	$\mathbf{R}_{orall}$:	? $(\Phi; S \models \forall x_i A; \Psi)$
	? $(\Phi; S \ \forall x_i A \ A \ (x_i / \tau) \ T \models B; \Psi)$ provided that x_i is free in A; τ is any parameter		? $(\Phi; S \models A(x_i/\tau); \Psi)$ provided that x_i is free in A , and τ is a parameter which does not occur in $S \models \forall x_i A$
L∃:	? (Φ ; <i>S</i> ' $\exists x_i A$ ' <i>T</i> <i>B</i> ; Ψ)	R ∃:	? (Φ ; $S \models \exists x_i A; \Psi$)
	? $(\Phi; S'A(x_i/\tau)'T \models B; \Psi)$ provided that x_i is free in A , and τ is a parameter which does not occur in $S'\exists x_iA'T \models B$? $(\Phi; S \ \forall x_i \neg A \models A(x_i / \tau); \Psi)$ provided that x_i is free in A ; τ is any parameter

Rules of E^{RPQ} will be presented in a format similar to that of rules of E^{PQ} .

In order to characterize inferential rules of $\mathbf{E}^{\mathbf{RPQ}}$, however, we also have to define the syntactical relation <u>oqe</u> (after "obvious quantificational equivalence") among sentences of \boldsymbol{L} . For brevity, we adopt the following notational convention: if ∇ is \forall , then Δ is \exists ; if ∇ is \exists then Δ is \forall .

Definition 1.

- (i) $\nabla x_i A \text{ <u>oqe</u>} \neg \Delta x_i \neg A$,
- (ii) $\neg \Delta x_i \neg A \underline{\text{oqe}} \nabla x_i A$,
- (iii) $\neg \nabla x_i A \text{ <u>oqe</u> } \Delta x_i \neg A,$
- (iv) $\Delta x_i \neg A \text{ <u>oqe</u> } \neg \nabla x_i A$,
- (v) *nothing else stands in the relation* <u>oqe.</u>

Here is the complete list of *primary inferential rules* of E^{RPQ} :

$$\begin{array}{c} \boldsymbol{R}_{\boldsymbol{\alpha}} & ? (\Phi; \ \boldsymbol{\mid} S \ \boldsymbol{\mid} \alpha \ \boldsymbol{\mid} T; \ \Psi) \\ \hline ? (\Phi; \ \boldsymbol{\mid} S \ \boldsymbol{\mid} \alpha, \ \boldsymbol{\mid} T; \ \boldsymbol{\mid} S \ \boldsymbol{\mid} \alpha, \ \boldsymbol{\mid} T; \ \Psi) \end{array}$$

$$\frac{\boldsymbol{R}_{\boldsymbol{\beta}}}{? (\Phi; \mid S \mid \boldsymbol{\beta} \mid T; \Psi)} = \frac{? (\Phi; \mid S \mid \boldsymbol{\beta} \mid T; \Psi)}{? (\Phi; \mid S \mid \boldsymbol{\beta}_1 \mid \boldsymbol{\beta}_2 \mid T; \Psi)}$$

$$\boldsymbol{R}_{\neg \neg} = \frac{? (\Phi; \models S '\neg \neg A 'T; \Psi)}{? (\Phi; \models S 'A 'T; \Psi)}$$

$$\boldsymbol{R}_{\exists} \qquad \begin{array}{c} ? (\Phi; \models S \; \exists x_i \; A \; 'T; \Psi) \\ \hline ? (\Phi; \models S \; \exists x_i \; A \; A \; (x_i/\tau) \; 'T; \Psi) \\ \hline \end{array}$$

provided that x_i is free in A; τ is any parameter

$$\boldsymbol{R}_{\forall}$$
 ? (Φ ; $\models S \; \forall x_i A \; T; \Psi$)

? $(\Phi; \models S'A(x_i/\tau) 'T; \Psi)$ provided that x_i is free in A, and τ is a parameter which does not occur in $\models S '\forall x_i A 'T$.

 $\boldsymbol{R}_{\forall^{\star}} = \frac{? (\Phi; \models S \forall x_i A \forall T; \Psi)}{? (\Phi; \models S A \forall T; \Psi)}$

provided that x_i is not free in A

$$R_{\exists^{*}} = \frac{? (\Phi; \models S ' \exists x_i A ' T; \Psi)}{? (\Phi; \models S 'A 'T; \Psi)}$$

$$provided that x_i is not free in A$$

$$R_{oge} = ? (\Phi; \models S 'A 'T; \Psi)$$

? $(\Phi; \models S \mid B \mid T; \Psi)$ provided that B oge A.

Lemma 1: Primary rules of $\mathbf{E}^{\mathbf{RPQ}}$ preserve the transmission of joint validity of sequents in both directions, that is, if Q^* results from Q by an application of a primary rule of $\mathbf{E}^{\mathbf{RPQ}}$, then each constituent (sequent) of Q^* is valid if and only if each constituent (sequent) of Q is valid.

Proof: By cases.

Since we will not consider derived rules here, in what follows by rules of E^{PRQ} we will mean primary rules of E^{PRQ} . Socratic transformations are defined in the standard way.

Definition 2: A sequence of questions $\langle Q_1, Q_2, ... \rangle$ of L^{**} is a Socratic transformation of a question Q via $\mathbf{E}^{\mathbf{RPQ}}$ iff $Q_1 = Q$, and Q_{i+1} results from Q_i $(i \ge 1)$ by an application of a rule of $\mathbf{E}^{\mathbf{RPQ}}$.

We say that a finite Socratic transformation *leads to* a question Q_i iff Q_i is the last term of the transformation.

Recall that a pure sequent is a sequent in which only pure sentences (*i.e.* sentences which do not involve any parameters) occur. The concept of a Socratic proof is defined by:

Definition 3: Let $\models A$ be a pure sequent. A Socratic proof of $\models A$ in $\mathbf{E}^{\mathbf{RPQ}}$ is a finite Socratic transformation of ? ($\models A$) via $\mathbf{E}^{\mathbf{RPQ}}$ such that for each constituent ϕ of the last question of the transformation: ²

- (a) ϕ is of the form $\models T'B'U' \neg B'W$, or
- (b) ϕ is of the form $\models T' \neg B'U'B'W$.

If sequent $\models A$ has a Socratic proof in \mathbf{E}^{PQ} , we say that $\models A$ is provable in \mathbf{E}^{PQ} . Moreover, we say that the sentence A is provable in \mathbf{E}^{RPQ} . A constituent of the form (a) or (b) is called successful.

Let us stress that, according to Definition 2, each Socratic proof in E^{RPQ} must begin with a question based on a pure sequent. An analogous restriction is imposed in E^{PQ} .

Corollary 1. Any sequent of the form (a) or (b) specified in Definition 2 is valid.

Theorem 1 (soundness of $\mathbf{E}^{\mathbf{PRQ}}$) If $\models A$ is provable in $\mathbf{E}^{\mathbf{RPQ}}$, then A is valid.

P r o o f: Each constituent of the last question of a Socratic proof of |A| is valid. Hence, by Lemma 1, the sequent |A| is valid, and thus the sentence A is valid.

3. A Short Comparison of E^{PQ} and E^{PRQ}

Observe that the propositional rules of both calculi are eliminative: an application of a rule amounts to the elimination of a binary connective or a double negation. Consecutive applications of quantificational rules of $\mathbf{E}^{\mathbf{PQ}}$ may result in the elimination of all quantificational

² Since we do not have structural rules, both (a) and (b) are needed.

formulas with the exception of formulas of the form $\forall x_i A$, where x_i is free in A. **E**^{**RPQ**} has a similar property with regard to formulas of the form $\exists x_i A$ and $\neg \forall x_i A$ (with x_i free in A).

Another feature of $\mathbf{E}^{\mathbf{RPQ}}$ is that it allows for repeating questions (although only in a somehow stupid way; a Socratic transformation of the kind $\langle Q, Q', Q \rangle$ is permitted due to the presence of rule $\mathbf{R}_{\underline{oqe}}$)³. On the other hand, repetitions of questions never happen in Socratic transformations via $\mathbf{E}^{\mathbf{PQ}}$.

As far as $\mathbf{E}^{\mathbf{PQ}}$ is concerned, the complexity of a "new" wff is not greater than the complexity of the "old" formula. This does not hold in $\mathbf{E}^{\mathbf{RPQ}}$. Again, rule \mathbf{R}_{oge} is the reason.

However, it seems that rule R_{oae} is natural in a "Socratic" erotetic setting. The underlying idea is: use that one of semantically equivalent quantificational formulas which is convenient in a given context.

4. Completeness of E^{RPQ}

In the completeness proof of $\mathbf{E}^{\mathbf{RPQ}}$ we shall use an indirect method (although a direct proof is also possible). The general idea of our proof is the following. Since $\mathbf{E}^{\mathbf{PQ}}$ is complete (see Wiśniewski and Shangin 2006), each valid sequent of the form $\models A$ is provable in $\mathbf{E}^{\mathbf{PQ}}$. We will show that for each (Socratic) proof of $\models A$ in $\mathbf{E}^{\mathbf{PQ}}$ there exists a "parallel" (Socratic) proof of $\models A$ in $\mathbf{E}^{\mathbf{RPQ}}$. We proceed in a "constructive" way, showing how a proof in $\mathbf{E}^{\mathbf{RPQ}}$ can be extracted from a given proof in $\mathbf{E}^{\mathbf{PQ}}$.

First we introduce some auxiliary concepts:

Definition 4 (duals): (i) If A is of the form $\neg B$, then $A^{\#} = B$; (ii) if A is not of the form $\neg B$, then $A^{\#} = \neg A$.

Definition 5 (dual sequences of wffs): If $S = \langle B_1, ..., B_n \rangle$, then: (a) $S^{\#} = S$ if n = 0; (ii) $S^{\#} = \langle B_1^{\#}, ..., B_n^{\#} \rangle$ if n > 0.

Definition 6 (dual sequents): $(S \models A)^{\#} = \models S^{\#} A$

Definition 6 (dual questions): $(? (S_1 \models A_1; ...; S_n \models A_n))^{\#} = ? (\models S_1^{\#} A_1; ...; \models S_n^{\#} A_n)$

We shall prove:

Lemma 2: Let $\mathbf{s} = \langle Q_1, ..., Q_n \rangle$ be a Socratic proof of $\models A$ in $\mathbf{E}^{\mathbf{PQ}}$. Then for each index *i* such that $1 < i \le n$ the following holds: either $Q_i^{\#} = Q_{i-1}^{\#}$, or $Q_i^{\#}$ results from $Q_{i-1}^{\#}$ by a rule of $\mathbf{E}^{\mathbf{RPQ}}$, or $Q_i^{\#}$ does not result from $Q_{i-1}^{\#}$ by a rule of $\mathbf{E}^{\mathbf{RPQ}}$, but there exists a finite Socratic transformation of $Q_{i-1}^{\#}$ via $\mathbf{E}^{\mathbf{RPQ}}$ that leads to $Q_i^{\#}$.

P r o o f: Since s is a Socratic proof in $\mathbf{E}^{\mathbf{PQ}}$, Q_i ($1 \le i \le n$) results from Q_{i-1} by applying a rule of $\mathbf{E}^{\mathbf{PQ}}$. We have to consider the following cases:

I: Propositional cases

<u>*Case 1.1*</u>: Rule L_{¬¬} was applied to Q_{i-1} with respect to a wff, say, ¬¬A. Now $Q_{i-1}^{\#} = ?(\Phi; \vdash S^{\#} (\neg \neg A)^{\#} | T^{\#} | B)$ and $Q_i^{\#} = ?(\Phi; S^{\#} | (A)^{\#} | T^{\#} | B)$. Let us observe that $(\neg \neg A)^{\#} = (A)^{\#} = \neg A$ if A is not of the form ¬D; otherwise $(\neg \neg A)^{\#} = \neg \neg D$ and $(A)^{\#} = D$. Hence either $Q_i^{\#} = Q_{i-1}^{\#}$, or $Q_i^{\#}$ results from $Q_{i-1}^{\#}$ by $\mathbf{R}_{\neg\neg}$.

³ An easy remedy for this is to require the elements of a Socratic transformation to be syntactically different. This would complicate the metatheory, however.

<u>*Case 1.2*</u>: Rule \mathbf{L}_{β} was applied to Q_{i-1} with respect to a given β -wff. Now $Q_{i-1}^{\#} = ?(\Phi; \mid S^{\#} \mid \beta^{\#} \mid T^{\#} \mid B; \Psi)$ and $Q_{i}^{\#} = ?(\Phi; \mid S^{\#} \mid \beta_{1}^{\#} \mid T^{\#} \mid B; \mid S^{\#} \mid \beta_{2}^{\#} \mid T^{\#} \mid B; \Psi)$.

Assume that $\beta = A \lor C$. We have $\beta^{\#} = \neg (A \lor C)$, $\beta_1^{\#} = (A)^{\#}$, and $\beta_2^{\#} = (C)^{\#}$. If neither A nor C is of the form $\neg D$, then $(A)^{\#} = \neg A$ and $(B)^{\#} = \neg B$. Hence $Q_i^{\#}$ results from $Q_{i-1}^{\#}$ by $R_{\neg \vee}$. Now suppose that A is of the form $\neg D$, and that C is of the form $\neg E$. In this case $(A)^{\#} = D$ and $(C)^{\#} = E$. However, the following Socratic transformation⁴ of $Q_{i-1}^{\#}$ via $\mathbf{E}^{\mathbf{RPQ}}$ leads to $Q_i^{\#}$: $\mathbf{T}(\mathbf{L}_{\vee}/R_{\neg \vee}, R_{\neg \neg}, R_{\neg \neg})$:

?
$$(\Phi; \models S^{\#} : \neg (\neg D \lor \neg E) : T^{\#} : B; \Psi)$$

? $(\Phi; \models S^{\#} : \neg \neg D : T^{\#} : B; \models S_{\#} : \neg \neg E : T^{\#} : B; \Psi)$
? $(\Phi; \models S^{\#} : D : T^{\#} : B; \models S^{\#} : \neg \neg E : T^{\#} : B; \Psi)$
? $(\Phi; \models S^{\#} : D : T^{\#} : B; \models S^{\#} : E : T^{\#} : B; \Psi)$
? $(\Phi; \models S^{\#} : D : T^{\#} : B; \models S^{\#} : E : T^{\#} : B; \Psi)$

It is obvious that if only one of $\{A, C\}$ begins with \neg , then there exists a Socratic transformation of $Q_{i-1}^{\#}$ via $\mathbf{E}^{\mathbf{RPQ}}$ which leads to $Q_i^{\#}$; this transformation differs from the previous one in applying rule $\mathbf{R}_{\neg\neg}$ only once. These transformations (recall that we have two possibilities here) can be designated by $\mathbf{T}_1(\mathbf{L}_{\vee} / \mathbf{R}_{\neg\vee}, \mathbf{R}_{\neg\neg})$ and $\mathbf{T}_2(\mathbf{L}_{\vee} / \mathbf{R}_{\neg\vee}, \mathbf{R}_{\neg\neg})$, respectively. We leave their description to the reader.

Assume that $\beta = A \rightarrow C$. Thus $\beta^{\#} = \neg (A \rightarrow C)$ and $\beta_1^{\#} = A$. Suppose that *C* is not of the form $\neg D$. Hence $\beta_2^{\#} = \neg C$. Therefore $Q_i^{\#}$ results from $Q_{i-1}^{\#}$ by $\mathbf{R}_{\neg \rightarrow}$. Now suppose that *C* is of the form $\neg D$. Thus $\beta_2^{\#} = D$. However, the following is a transformation of $Q_{i-1}^{\#}$ via $\mathbf{E}^{\mathbf{RPQ}}$ which leads to $Q_i^{\#}$:

$$T(L \rightarrow / R \rightarrow , R \rightarrow)$$
:

Assume that $\beta = \neg (A \land B)$. Hence $\beta^{\#} = A \land B$, $\beta_1^{\#} = A$, and $\beta_2^{\#} = B$. Therefore $Q_i^{\#}$ results from $Q_{i-1}^{\#}$ by \mathbf{R}_{\wedge} .

<u>*Case 1.3*</u>: Rule \mathbf{L}_{α} was applied to Q_{i-1} with respect to a given α -wff. We have $Q_{i-1}^{\#} = ?(\Phi; \vdash S^{\#} \alpha_{1}^{\#} \alpha_{2}^{\#} T^{\#} B; \Psi)$ and $Q_{i}^{\#} = ?(\Phi; \vdash S^{\#} \alpha_{1}^{\#} \alpha_{2}^{\#} T^{\#} B; \Psi)$.

Assume that $\alpha = A \wedge C$. Hence $\alpha^{\#} = \neg (A \wedge C)$. Suppose that neither A nor C begins with \neg . Hence $\alpha_1^{\#} = \neg A$ and $\alpha_2^{\#} = \neg C$. Thus $Q_i^{\#}$ results from $Q_{i-1}^{\#}$ by $\mathbf{R}_{\neg A}$. Now suppose that $A = \neg D$, but C is not of the form $\neg E$. It follows that $\alpha_1^{\#} = D$ and $\alpha_2^{\#} = \neg C$. Let us now consider the following Socratic transformation of $Q_{i-1}^{\#}$ via $\mathbf{E}^{\mathbf{RPQ}}$:

$$T_1(L_A / R_A, R_A)$$
:

?
$$(\Phi; \models S^{\#} : \neg (\neg D \land C) : T^{\#} : B; \Psi)$$

? $(\Phi; \models S^{\#} : \neg \neg D : \neg C : T^{\#} : B; \Psi)$
? $(\Phi; \models S^{\#} : D : \neg C : T^{\#} : B; \Psi)$
R,

The above transformation leads to $Q_i^{\#}$. If *A* is not of the form $\neg D$, but $C = \neg E$, we have the following transformation via $\mathbf{E}^{\mathbf{RPQ}}$ with the desired property

⁴ For transparency, we highlight the sentence of L acted upon.

 $T_2(L_A / R_A, R_B)$:

?
$$(\Phi; \models S^{\#} \neg (B \land \neg E) T^{\#} B; \Psi)$$

? $(\Phi; \models S^{\#} \neg B \neg E T^{\#} B; \Psi)$
? $(\Phi; \models S^{\#} \neg B E T^{\#} B; \Psi)$
? $(\Phi; \models S^{\#} \nabla B E T^{\#} B; \Psi)$

If $B = \neg D$ and $C = \neg E$, then $\alpha_1^{\#} = D$ and $\alpha_2^{\#} = E$. In this case the following transformation via $\mathbf{E}^{\mathbf{RPQ}}$ leads to $Q_i^{\#}$:

 $T(L_{\wedge} / R_{\neg \wedge}, R_{\neg \neg}, R_{\neg \neg})$

?
$$(\Phi; \models S^{\#} : \neg (\neg D \land \neg E) : T^{\#} : B; \Psi)$$

? $(\Phi; \models S^{\#} : \neg \neg \neg D : \neg \neg E : T^{\#} : B; \Psi)$
? $(\Phi; \models S^{\#} : D : \neg \neg E : T^{\#} : B; \Psi)$
? $(\Phi; \models S^{\#} : D : \Box : T^{\#} : B; \Psi)$
? $(\Phi; \models S^{\#} : D : E : T^{\#} : B; \Psi)$

Assume that $\alpha = \neg (A \rightarrow C)$. Now $\alpha^{\#} = A \rightarrow C$ and $\alpha_2^{\#} = C$ (since $\alpha_2 = \neg C$). Suppose that *A* is not of the form $\neg D$. Thus $\alpha_1^{\#} = \neg A$ and therefore $Q_i^{\#}$ results from $Q_{i-1}^{\#}$ by \mathbf{R}_{\rightarrow} . Now suppose that $A = \neg D$. Hence $\alpha_1^{\#} = D$. However, in this case the following transformation via $\mathbf{E}^{\mathbf{RPQ}}$ leads to $Q_i^{\#}$:

 $T(L_{\neg \rightarrow} / R_{\rightarrow}, R_{\neg \neg}):$

?
$$(\Phi; \models S^{\#} : \neg D \rightarrow C : T^{\#} : B; \Psi)$$

? $(\Phi; \models S^{\#} : \neg \neg D : C : T^{\#} : B; \Psi)$
? $(\Phi; \models S^{\#} : D : C : T^{\#} : B; \Psi)$
R_--

Assume that $\alpha = \neg (A \lor B)$. Thus $\alpha^{\#} = A \lor B$, $\alpha_1^{\#} = A$, and $\alpha_2^{\#} = B$. Therefore $Q_i^{\#}$ results from $Q_{i-1}^{\#}$ by \mathbf{R}_{\lor} .

<u>*Case 1.4*</u>: Q_i arises from Q_{i-1} by \mathbf{R}_{β} . Hence $Q_{i-1}^{\#} = ?(\Phi; \models S^{\#} \mid \beta; \Psi)$ and $Q_i^{\#} = ?(\Phi; \models S^{\#} \mid \beta_2; \Psi)$.

Assume that $\beta = \neg (A \land C)$. Thus $\beta_1^* = A$. Suppose that *A* is not of the form $\neg D$. Hence $(\beta_1^*)^{\#} = \neg A$ and therefore we get $Q_i^{\#}$ from $Q_{i-1}^{\#}$ by $\mathbf{R}_{\neg A}$. Suppose that $A = \neg D$. In this case $\beta_1^* = \neg D$ and hence $(\beta_1^*)^{\#} = D$. However, the following transformation via $\mathbf{E}^{\mathbf{RPQ}}$ has the desired property:

 $T(R_{\neg \wedge} / R_{\land}, R_{\neg \neg})$:

?
$$(\Phi; \models S^{\#} '\neg (\neg D \land C); \Psi)$$
 R_{β}

 ? $(\Phi; \models S^{\#} '\neg \neg D '\neg C; \Psi)$
 R_{\neg}

 ? $(\Phi; \models S^{\#} 'D '\neg C; \Psi)$
 R_{\neg}

Assume that $\beta = A \lor C$. Thus $\beta^{\#} = \neg (A \lor C)$. Suppose that $A = \neg D$. It follows that $\beta_1^* = \neg \neg D$ and $(\beta_1^*)^{\#} = \neg D = A$. Therefore we get $Q_i^{\#}$ from $Q_{i-1}^{\#}$ by \mathbf{R}_{\lor} . Now suppose that A is not of the form $\neg D$. In this case we have $\beta_1^* = \neg A$ and hence $(\beta_1^*)^{\#} = A$. Again, we get $Q_i^{\#}$ from $Q_{i-1}^{\#}$ by \mathbf{R}_{\lor} .

Assume that $\beta = A \rightarrow C$. Hence $\beta_1^* = A$. Suppose that A is not of the form $\neg D$. Thus $(\beta_1^*)^{\#} = \neg A$ and therefore $Q_i^{\#}$ arises from $Q_{i-1}^{\#}$ by \mathbf{R}_{\rightarrow} . Now suppose that $A = \neg D$. Since $\beta_1^* = A$, it follows that $(\beta_1^*)^{\#} = D$. However, the following transformation via $\mathbf{E}^{\mathbf{RPQ}}$ leads to $Q_i^{\#}$:

 $T(\mathbf{R} \rightarrow / \mathbf{R} \rightarrow , \mathbf{R} \rightarrow)$:

?
$$(\Phi; \models S^{\#} (\neg D \rightarrow C); \Psi)$$

? $(\Phi; \models S^{\#} '\neg \neg D 'C; \Psi)$
? $(\Phi; \models S^{\#} 'D 'C; \Psi)$
R_{¬¬}

<u>*Case 1.5*</u>: Q_i arises from Q_{i-1} by \mathbf{R}_{α} . Since an application of \mathbf{R}_{α} has an analogous effect as an application of \mathbf{R}_{α} , $Q_i^{\#}$ results from $Q_{i-1}^{\#}$ by \mathbf{R}_{α} .

<u>*Case 1.6*</u>: Q_i arises from Q_{i-1} by **R**₋₋. Again, the case is obvious (for similar reasons as above).

II. Quantificational cases

<u>Case 2.1</u>: Q_i results from Q_{i-1} by rule \mathbf{L}_{\forall} . Thus $Q_{i-1}^{\#} = ? (\Phi; \mid S^{\#} (\forall x_i A)^{\#} T^{\#} B; \Psi)$ and $Q_i^{\#} = ? (\Phi; \mid S^{\#} (\forall x_i A)^{\#} T^{\#} B; \Psi)$.

Observe that $(\forall x_i A)^{\#} = \neg \forall x_i A$. If A is not of the form $\neg D$, then $(A(x_i/\tau))^{\#} = \neg A(x_i/\tau)$. The following transformation via $\mathbf{E}^{\mathbf{RPQ}}$ leads to $Q_i^{\#}$:

 $T_1(L_{\forall} / R_{\underline{oqe}}, R_{\exists}, R_{\underline{oqe}})$:

? $(\Phi; \models S^{\#} \lor \neg \forall x_i A \lor T^{\#} B; \Psi)$	R _{oge}
? $(\Phi; \models S^{\#} : \exists x_i \neg A : T^{\#} : B; \Psi)$	R _∃
? $(\Phi; \models S^{\#} : \exists x_i \neg A : \neg A(x_i/\tau) : T^{\#} : B; \Psi)$	R _{oqe}
? (Φ ; $\downarrow S^{\#}$ ' $\neg \forall x_i A$ ' $\neg A(x_i / \tau)$ ' $T^{\#}$ ' B ; Ψ)	

If $A = \neg D$, then $(A(x_i/\tau))^{\#} = D(x_i/\tau)$. In this case we have the following transformation via $\mathbf{E}^{\mathbf{RPQ}}$ with the desired property:

 $T_2(L_{\forall} / R_{\underline{oqe}}, R_{\exists})$:

? $(\Phi; \models S^{\#} \neg \forall x_i \neg D \neg T^{\#} B; \Psi)$	R _{oge}
? $(\Phi; \models S^{\#} \exists x_i D \exists x_i P)$	R∃
? $(\Phi; \models S^{\#} : \exists x_i D : D(x_i/\tau) : T^{\#} : B; \Psi)$	R _{oge}
? $(\Phi; \models S^{\#} : \neg \forall x_i \neg D : D(x_i / \tau) : T^{\#} : B; \Psi)$	

<u>*Case 2.2*</u>: Q_i results from Q_{i-1} by rule \mathbf{L}_{\exists} . Hence $Q_{i-1}^{\#} = ?(\Phi; \mid S^{\#} (\exists x_i A)^{\#} T^{\#} B; \Psi)$ and $Q_i^{\#} = ?(\Phi; \mid S^{\#} (A(x_i/\tau))^{\#} T^{\#} B; \Psi)$.

Clearly, $(\exists x_i A)^{\#} = \neg \exists x_i A$. If A is not of the form $\neg D$, then $(A(x_i/\tau))^{\#} = \neg A(x_i/\tau)$. We get $Q_i^{\#}$ from $Q_{i-1}^{\#}$ as follows:

 $T_1(L_\exists / R_{\underline{oqe}}, R_\forall)$:

?
$$(\Phi; \models S^{\#} : \neg \exists x_i A : T^{\#} : B; \Psi)$$

? $(\Phi; \models S^{\#} : \forall x_i \neg A : T^{\#} : B; \Psi)$
? $(\Phi; \models S^{\#} : \neg A(x_i/\tau) : T^{\#} : B; \Psi)$
R_{\not}

If $A = \neg D$, then $(A(x_i/\tau))^{\#} = D(x_i/\tau)$. In this case we have: $\mathbf{T}_2(\mathbf{L}_{\exists}/\mathbf{R}_{\underline{oge}}, \mathbf{R}_{\forall})$:

? $(\Phi; \downarrow S^{\#} : \neg \exists x_i \neg D : T^{\#} : B; \Psi)$ R_{oge}

?
$$(\Phi; \models S^{\#} \forall x_i D \forall T^{\#} B; \Psi)$$

? $(\Phi; \models S^{\#} D(x_i/\tau) T^{\#} B; \Psi)$
 R_{\forall}

<u>*Case 2.3*</u>: Q_i results from Q_{i-1} by rule \mathbf{L}_{κ} applied with respect to a sentence of the form $\forall x_i A$, where x_i is not free in A. Thus $Q_{i-1}^{\#} = ? (\Phi; \models S^{\#} `(\forall x_i A)^{\#} 'T^{\#} 'B; \Psi)$ and $Q_i^{\#} = ? (\Phi; \models S^{\#} '(A)^{\#} 'T^{\#} 'B; \Psi)$.

As above, we have $(\forall x_i A)^{\#} = \neg \forall x_i A$. There are two possibilities: (a) A is not of the form $\neg D$ and thus $(A)^{\#} = \neg A$, and (b) $A = \neg D$ and hence $(A)^{\#} = D$. Suppose that (a) holds. In this case we have:

Now suppose that (b) takes place. The following transformation via $\mathbf{E}^{\mathbf{RPQ}}$ has the desired property:

 $T_2(L_{\kappa (\forall^*)} / R_{\underline{oqe}}, R_{\exists^*}):$

$$\begin{array}{l} ? (\Phi; \models S^{\#} : \neg \forall x_{i} \neg D : T^{\#} : B; \Psi) & R_{\underline{oge}} \\ ? (\Phi; \models S^{\#} : \exists x_{i} D : T^{\#} : B; \Psi) & R_{\exists^{*}} \\ ? (\Phi; \models S^{\#} : D : T^{\#} : B; \Psi) \end{array}$$

<u>*Case 2.4*</u>: Q_i results from Q_{i-1} by rule \mathbf{L}_{κ} applied with respect to a sentence of the form $\exists x_i A$, where x_i is not free in A. We reason analogously as above and come to the conclusion that $Q_i^{\#}$ can be reached from $Q_{i-1}^{\#}$.

<u>*Case 2.5*</u>: Q_i results from Q_{i-1} by rule $\mathbf{L}_{\neg\exists}$. It is clear that $Q_i^{\#}$ arises from $Q_{i-1}^{\#}$ by $\mathbf{R}_{\underline{oqe}}$.

<u>*Case 2.6*</u>: Q_i results from Q_{i-1} by rule $\mathbf{L}_{\neg\forall}$. Again, it is obvious that $Q_i^{\#}$ arises from $Q_{i-1}^{\#}$ by \mathbf{R}_{ode} .

<u>*Case 2.7*</u>: Q_i results from Q_{i-1} by rule \mathbf{R}_{\forall} . Now $Q_i^{\#}$ arises from $Q_{i-1}^{\#}$ by \mathbf{R}_{\forall} .

<u>*Case 2.8*</u>: Q_i results from Q_{i-1} by rule \mathbf{R}_{\exists} . Thus $Q_{i-1}^{\#} = ?(\Phi; \models S^{\#} `\exists x_i A; \Psi)$ and $Q_i^{\#} = ?(\Phi; \models S^{\#} `\neg \forall x_i \neg A `A(x_i/\tau); \Psi)$. We arrive at $Q_i^{\#}$ in the following transformation via $\mathbf{E}^{\mathbf{RPQ}}$:

 $T(L_{\exists}/R_{\exists}, R_{\underline{oqe}})$:

?
$$(\Phi; \models S^{\#} \exists x_i A; \Psi)$$

? $(\Phi; \models S^{\#} \exists x_i A \exists A (x_i/\tau); \Psi)$
? $(\Phi; \models S^{\#} \neg \forall x_i \neg A A (x_i/\tau); \Psi)$

<u>*Case 2.9*</u>: Q_i results from Q_{i-1} by rule \mathbf{R}_{κ} applied with respect to a sentence of the form $\forall x_i A$, where x_i is not free in A. Now $Q_i^{\#}$ arises from $Q_{i-1}^{\#}$ by \mathbf{R}_{\forall^*} .

<u>*Case 2.10*</u>: Q_i results from Q_{i-1} by rule \mathbf{R}_{κ} applied with respect to a sentence of the form $\exists x_i A$, where x_i is not free in A. It is clear that $Q_i^{\#}$ comes from $Q_{i-1}^{\#}$ by \mathbf{R}_{\exists^*} .

<u>*Case 2.11*</u>: Q_i results from Q_{i-1} by rule $\mathbf{R}_{\neg\exists}$. It is obvious that $Q_i^{\#}$ arises from $Q_{i-1}^{\#}$ by $\mathbf{R}_{\underline{oqe}}$. <u>*Case 2.12*</u>: Q_i results from Q_{i-1} by rule $\mathbf{R}_{\neg\forall}$. Now we get $Q_i^{\#}$ from $Q_{i-1}^{\#}$ by $\mathbf{R}_{\underline{oqe}}$. **Lemma 3**: Let $\mathbf{s} = \langle Q_1, ..., Q_n \rangle$ be a Socratic proof of $\models A$ in $\mathbf{E}^{\mathbf{PQ}}$ and let $Q_n = ? (S_1 \models A_1, ..., S_n \models A_n)$. Let $Q_n^{\#} = ? (\models S_1^{\#} A_1, ..., \models S_n^{\#} A_n)$. Each constituent of $Q_n^{\#}$ is successful, i.e. is of the form $\models T B U - B W$, or is of the form $\models T - B U B W$.

Proof: Since Q_n is the last question of a Socratic proof in $\mathbf{E}^{\mathbf{PQ}}$, then for each constituent of Q_n at least one of the following holds: (a) there is a sentence which occurs both left and right of the turnstile, (b) there is a sentence such that this sentence and its negation occurs left of the turnstile. Thus, by definitions 4, 5, and 6, each constituent of $Q_n^{\#}$ is successful.

Lemma 4. If $\models A$ is provable in $\mathbf{E}^{\mathbf{PQ}}$, then $\models A$ is provable in $\mathbf{E}^{\mathbf{RPQ}}$.

P r o o f: Let $\mathbf{s} = \langle Q_1, ..., Q_n \rangle$ be a Socratic proof of $\models A$ in $\mathbf{E}^{\mathbf{PQ}}$. We consider the following sequence $\mathbf{s}^{\#}$ of questions of L^{**}

(2) $< Q_1^{\#}, ..., Q_n^{\#} >$

According to Definition 4, $Q_1^{\#} = ?(\models A)$. By Lemma 3, each constituent of $Q_n^{\#}$ is successful. By Lemma 2, for each index *i* such that $1 \le i \le n$ we have:

- (a) $Q_i^{\#} = Q_{i-1}^{\#}$, or
- (b) $Q_i^{\#}$ results from $Q_{i-1}^{\#}$ by a rule of $\mathbf{E}^{\mathbf{RPQ}}$, or
- (c) $Q_i^{\#}$ does not result from $Q_{i-1}^{\#}$ by a rule of $\mathbf{E}^{\mathbf{RPQ}}$, but there exists a finite Socratic transformation of $Q_{i-1}^{\#}$ via $\mathbf{E}^{\mathbf{RPQ}}$ that leads to $Q_i^{\#}$.

Now observe that the above conditions are mutually exclusive. So for a given index i $(1 \le i \le n)$ exactly one of them is fulfilled.

If condition (b) holds for each index *i* such that $1 \le i \le n$, then $\mathbf{s}^{\#}$ is a Socratic proof of $\models A$ in $\mathbf{E}^{\mathbf{RPQ}}$. Otherwise we take $\mathbf{s}^{\#}$ and we act as follows:

- (*) we delete consecutive occurrences of the same question, *i.e.* if $Q_i^{\#} = Q_{i-1}^{\#}$, then we delete $Q_i^{\#}$ and leave $Q_{i-1}^{\#}$ only, and/or
- (**) we embed the appropriate Socratic transformation of $Q_{i\cdot1}^{\#}$ that leads to $Q_i^{\#}$, according to the schemata presented in the proof of Lemma 2, *i.e.* if $Q_i^{\#}$ does not result from $Q_{i\cdot1}^{\#}$ by a rule of $\mathbf{E}^{\mathbf{RPQ}}$ and $\langle Q_{i\cdot1}^{\#}, Q_1^{*}, ..., Q_k^{*}, Q_i^{\#} \rangle$ is the Socratic transformation via $\mathbf{E}^{\mathbf{RPQ}}$ that leads to $Q_i^{\#}$, we replace the subsequence $\langle Q_{i\cdot1}^{\#}, Q_i^{\#} \rangle$ with $\langle Q_{i\cdot1}^{\#}, Q_1^{*}, ..., Q_k^{*}, Q_i^{\#} \rangle$ (observe that $0 < k \le 2$).

It is clear that a sequence obtained from $s^{\#}$ in the above manner is a Socratic transformation of $?(\models A)$ via $\mathbf{E}^{\mathbf{RPQ}}$. Since $Q_n^{\#}$ is still the last question of this sentence⁵ and $Q_n^{\#}$ involves only successful constituents, the outcome is a Socratic proof of $\models A$ in $\mathbf{E}^{\mathbf{RPQ}}$.

Theorem 2 (completeness of $\mathbf{E}^{\mathbf{RPQ}}$): Let A be a parameter-free sentence of **L**. If A is valid, then $\mid A$ is provable in $\mathbf{E}^{\mathbf{RPQ}}$.

P r o o f: If A is valid, then the sequent $\models A$ is valid. Due to the completeness of $\mathbf{E}^{\mathbf{PQ}}$, $\models A$ is provable in $\mathbf{E}^{\mathbf{PQ}}$. Therefore, by Lemma 4, $\models A$ is provable in $\mathbf{E}^{\mathbf{RPQ}}$ as well.

5. Final Remarks

The calculus $\mathbf{E}^{\mathbf{RPQ}}$ presented here originated from work on erotetic calculi for FOL in which questions are based on single-conclusioned sequents (and thus an "operative" interpre-

⁵ Even if action (*) was taken with respect to the last question of $s^{\#}$, because this can happen only if this question is identical with the previous one.

tation of the turnstile is possible), and which is grounded in Inferential Erotetic Logic. The calculus \mathbf{E}^{PQ} mentioned above was the result of the enterpise. \mathbf{E}^{PQ} can be easily transformed into a (non-standard) calculus of hypersequents; moreover, it determines a certain Gentzenstyle calculus (for details, see Wiśniewski and Shangin 2006). As long as $\mathbf{E}^{\mathbf{RPQ}}$ is concerned, a "translation" of $\mathbf{E}^{\mathbf{RPQ}}$ into a variant of Rasiowa-Sikorski calculus for FOL (see Rasiowa and Sikorski 1960) is almost immediate: by and large, it suffices to remove turnstiles and question marks from the rules. The rule resulting from \mathbf{R}_{oqe} , however, licenses some transitions which are not licensed by the original Rasiowa-Sikorski system (where transitions between $\nabla x_i A$ and $\neg \Delta x_i \neg A$ are not allowed, as well as transitions from $\Delta x_i \neg A$ to $\neg \nabla x_i A$). But the most interesting feature of Rasiowa-Sikorski style systems, that is, semantical invertibility of rules, is still retained. It seems that an "erotetic" calculus with a weaker version of \mathbf{R}_{oqe} (that is, licensing only transitions from $\neg \nabla x_i A$ to $\Delta x_i \neg A$) is complete as well. We give rule \mathbf{R}_{oqe} the current form because such a move facilitates translations of \mathbf{E}^{PQ} -proofs into proofs dealing with right-sided sequents only and sheds some light on the problem of duality.

REFERENCES

Leszczyńska, D. (2004), 'Socratic Proofs for Some Modal Normal Propositional Logics', *Logique et Analyse* **185-188**, pp. 147-178.

Leszczyńska, D. (2006), *The Method of Socratic Proofs for Normal Modal Propositional Logics*, Ph.D. dissertation, Institute of Philosophy, University of Zielona Góra.

Rasiowa, H., and Sikorski, R. (1960), 'On the Gentzen Theorem', *Fundamenta Mathematicae* XLVIII, pp. 57-69.

Wiśniewski, A. (2004), 'Socratic Proofs', Journal of Philosophical Logic 33, pp. 299-326.

Wiśniewski, A., and Shangin, V. (2006), 'Socratic Proofs for Quantifiers', *Journal of Philosophical Logic* 35, pp. 147-178.

Andrzej Wiśniewski Section of Logic and Cognitive Science, Institute of Psychology, Adam Mickiewicz University Poznań, Poland e-mail: Andrzej.Wisniewski@amu.edu.pl