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Andrzej Wísniewski

Abstract. A semantic relation of being permitted by a set of possible worlds
is defined and analysed. We call it “permittance”. The domain of permittance
comprises declarative sentences/formulas. A paraconsistent consequence rela-
tion which is both permittance-preserving and truth-preserving is character-
ized. An application of the introduced concepts in the analysis of question
raising is presented.
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1. Introduction

We are often confronted with a number of alternative accounts of how things are,
yet without knowing which of the accounts, if any, is the right one. These accounts
disagree on some issues and agree on others. Despite discrepancies, however, some
facts still remain known, some states of affairs are considered impossible, and some
statements are permitted while other are not.

In this paper we define the relation “a declarative sentence is permitted by
a set of possible worlds” and we analyse its basic properties. The possible worlds
in question are supposed to represent alternative accounts of how things are. We
dub the relation “permittance”. The definition proposed is an explication of the
corresponding intuitive notion of permitting, taken in one of its meanings. Our
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intuitions are presented in Section 1.2. For clarity, we start with a short description
of the basic logical tools used throughout the paper.

1.1. Logical preliminaries

We remain at the propositional level only. We consider a non-modal propositional
language, L. The vocabulary of L includes a non-empty set P = {p, q, r, . . .} of
propositional variables, the propositional constant ⊥ (falsum), and the connectives
¬, ∨, ∧, →. Well-formed formulas (wffs for short) of L are defined in the usual
manner. We shall use the letters A, B, C, . . ., with subscripts if needed, as meta-
language variables for wffs of L. The letters X, Y , . . . are metalanguage variables
for sets of wffs of L.

The connectives, as well as ⊥, are understood, at the truth-functional level,
as in Classical Propositional Logic. By an L-model we mean an ordered pair M =
〈W,V〉, where W 6= ∅ and V : P × W 7−→ {1,0} is a valuation of propositional
variables in P w.r.t. elements of W. As usual, the elements of the domain, W, are
called possible worlds. The concept of truth of a wff A in a world w ∈ W of M,
in symbols M, w |= A, is defined in the standard manner.The inscription M |= A
means “A is true in M”, that is, A is true in each world of the domain of M.

Elements of domains of L-models, the possible worlds, will be intuitively
thought of here as alternative accounts of how things are. This has no impact
on the formalism, however. As long as we remain at the propositional level, the
only condition imposed on W is non-emptiness. It follows that the domain of an
L-model need not contain all the relevant alternatives.

By a state we will mean a non-empty set of possible worlds. In view of the
intuitive interpretation of possible worlds adopted above, a non-singleton state
comprises a number of alternative accounts of how things are.

Let M = 〈W,V〉 be an L-model.

Definition 1 (Truth set of a wff in an L-model). |A|M = {w ∈ W : M, w |= A}.
Of course, |⊥|M = ∅.

Definition 2 (M-state). An M-state is a non-empty subset of W.

Note that W is (also) an M-state, and that, for each w ∈ W, the singleton
set {w} is an M-state.

1.2. Intuitions

Our basic intuition concerning the analysed concept of being permitted is:

(I) A declarative sentence/wff γ is permitted by a state σ iff it is not the case
that σ rules out γ.

However, what “rules out” means depends on the form of γ.

γ can be positive that is not of the form ¬ζ (where ¬ stands for sentential
negation and ζ is a declarative sentence/wff). It is natural to postulate:

(II) Let γ be positive. State σ rules out γ iff γ is false in each world of σ.
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For example, “Andrew is a bachelor” is ruled out by a state which comprises
(only) possible worlds in which Andrew is married.

γ can be negative that is of the form ¬ξ, where ξ is positive.1 We seem
justified in saying:

(III) Let γ be negative and γ = ¬ξ. State σ rules out γ iff ξ is true in some world
of σ.

For instance, a state that contains a possible world in which Andrew is a
bachelor rules out the sentence “It is not the case that Andrew is a bachelor.”

Assuming bivalence, by (I) and (II) we get:

(II*) A positive, γ, is permitted by a state σ iff γ is true in some world of σ.

By (I) and (III), in turn, we get:

(III*) A negative, γ, is permitted by a state σ iff γ is true in each world of σ.

An analogy can be of help. A civil servant is permitted to issue a positive
decision if there is a rule that entitles him/her to do so, and is permitted to decide
to the negative if the disputed activity is forbidden by each rule that is applicable
to the case. Similarly, a negative is permitted by a state if there is no world of the
state that makes the negated sentence true, while for a positive being permitted
by a state amounts to the existence of a world of the state which makes it true.
Our usage of “being permitted” is thus akin to that of its deontic cousin. Yet, we
do not aim at analysing “being permitted” deontically construed. Permittance in
our sense is a relation between a declarative sentence/wff on the one hand, and a
state on the other. What is (or is not) permitted is a declarative sentence/wff, and
what permits it (or does not permit) is a set of possible worlds, where possible
worlds are intuitively thought of as alternative accounts of how things are.2

The paper is organized as follows. In Section 2 we define the concept of per-
mittance, characterize its basic properties, and show how knowledge and epistemic
possibility can be modelled in our framework. Section 3 is devoted to permittance
of inconsistencies. In Section 4 we analyse a paraconsistent consequence relation
of transmission of permittance. Section 5 addresses the issue of question raising,
in particular the problem of question raising by inconsistencies.

2. Permittance

2.1. Definition and basic properties

Let M = 〈W,V〉 be an arbitrary but fixed L-model. “σ # A” reads: “wff A is
permitted by an M-state σ”. “#” is thus the sign of the permittance relation.

1Observe that ¬¬ξ is neither negative nor positive. We will come back to this issue later on.
2Looking from a formal point of view, permittance belongs to the same category as support

analysed in Inquisitive Semantics (see, e.g., [1], [7], [2]). However, the underlying intuitions are

different. Moreover, Inquisitive Semantics conceives states/sets of possible worlds as information
states.
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Given the considerations presented above, the following definition comes with
no surprise.

Definition 3 (Permittance).

1. σ # p iff |p|M ∩ σ 6= ∅, for any propositional variable p;
2. σ # ¬A iff σ 6# A;
3. σ # (A ∨B) iff |(A ∨B)|M ∩ σ 6= ∅;
4. σ # (A ∧B) iff |(A ∧B)|M ∩ σ 6= ∅;
5. σ # (A→ B) iff |(A→ B)|M ∩ σ 6= ∅;
6. σ # ⊥ iff |⊥|M ∩ σ 6= ∅.

Observe that permittance is not defined inductively. This is intended.
For positive wffs, being permitted by a state amounts to being true in some

world(s) of the state. To be more precise, as an immediate consequence of Defini-
tion 3 we get:

Corollary 1. Let σ be an M-state and let A be a positive wff. Then σ # A iff
M, w |= A for some w ∈ σ.

However, the case of negative wffs is different. By Corollary 1 and clause (2)
of Definition 3 we have:

Corollary 2. Let σ be an M-state. Let D be a wff of any of the forms: p, ⊥, (B ∨
C), (B ∧ C), (B → C). Then σ # ¬D iff M, w 6|= D for each w ∈ σ.

Hence:

Corollary 3. Let σ be an M-state and let A be a negative wff. Then σ # A iff
M, w |= A for each w ∈ σ.

Corollary 3 shows that negatives behave in the context of permittance as it
has been required in section 1.2.

But what about wffs which are neither positive nor negative? As for L, there
is only one kind of such wffs, namely wffs falling under the general schema:

¬ . . .¬D (1)

where D is positive and the number of negations preceding D is greater than 1. If
the number is even, we say that (1) is a ¬e-wff; otherwise (1) is a ¬o-wff. By DA

we designate the positive wff which occurs in a ¬e-wff A or in a ¬o-wff A after the
string of negations.3

One can prove:

Corollary 4. σ # ¬¬A iff σ # A.

Proof. By the clause (2) of Definition 3 we have:

σ # ¬¬A iff σ 6# ¬A
σ 6# ¬A iff σ # A

and hence σ # ¬¬A iff σ # A. �

3When A is neither positive nor negative, DA is in the scope of the rightmost negation of the
string.
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Thus, taking into account corollaries 1, 2, and 4 we get:

Corollary 5.

1. Let A be a ¬e-wff. Then σ # A iff M, w |= DA for some w ∈ σ iff M, w |= A
for some w ∈ σ.

2. Let A be a ¬o-wff. Then σ # A iff M, w 6|= DA for each w ∈ σ iff M, w |= A
for each w ∈ σ.

For brevity, let us introduce:

Definition 4 (p-wffs and n-wffs).

1. A p-wff is a positive wff or a ¬e-wff.
2. A n-wff is a negative wff or a ¬o-wff.

As we have shown, the categories of p-wffs and n-wffs are semantically homoge-
neous: a p-wff is permitted by a state iff it is true in at least one world of the state,
while a n-wff is permitted by a state iff it is true in each world of the state. Per-
mittance could had been concisely defined in terms of p-wffs and n-wffs. However,
doing this would require an ad hoc acceptance of the claim of Corollary 4.

2.1.1. Remarks.

Remark 1. For a singleton state permittance amounts to truth in the only world
of the state. As an immediate consequence of the above corollaries we get:

Corollary 6. Let M = 〈W,V〉 be an L-model and {w} be a (singleton) M-state.
Then {w}# A iff M, w |= A.

Remark 2. Permittance becomes intensional when non-singleton states enter the
picture. It happens that wffs which have equal truth sets (i.e. are classically equiv-
alent) are not simultaneously permitted by a state. For example, we have:

|¬(p→ q)|M = |p ∧ ¬q|M
Now take an L-model and its state {w1, w2} such that:

• V(p, w1) = 1 and V(q, w1) = 0,
• V(p, w2) = 0 and V(q, w2) = 0.

We get:

{w1, w2} 6# ¬(p→ q)
{w1, w2}# p ∧ ¬q

Remark 3. Note that wffs of the forms:

¬A (2)

A→ ⊥ (3)

do no differ as to their truth conditions in a world, but can differ with respect to
permittance by states. When A is a p-wff, (2) is permitted only by a state in which
A is false in each world of the state, whereas (3) can be permitted by a state in
which A is false only in some, but not all worlds. This does not mean, however,
that the negation connective ¬ has a non-classical meaning in L. Its meaning is
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determined by the standard truth condition. But ¬ behaves in a somewhat non-
standard way in the context of permittance.

Remark 4. Observe that for any wff A, any L-model M, and any M-state σ we
have:

σ # (¬A→ ⊥) iff σ # A ∧A (4)

Hence we are able to express in terms of permittance, and without using ⊥, that
a n-wff, B, is true in at least one, but not necessarily all worlds of a state σ; this
holds just in case the wff B ∧B is permitted by σ.

Note also that in general permittance is neither downward closed (if A is a
p-wff, permittance of A by σ need not yield permittance of A by a proper subset
of σ) nor upward closed (a n-wff permitted by a state need not be permitted by
an extension of the state). However, permittance is upward closed for p-wffs and
downward closed in the case of n-wffs.

2.2. Modalization

Let us now augment the initial language L with the modalities � (necessity) and
♦ (possibility). Wffs of the enriched language are defined in the standard manner.
We label the new language as L. We use φ, ψ, . . . as metalanguage variables for
wffs of L, and Φ,Ψ, . . . as metalanguage variables for sets of wffs of the language.
Whenever � or ♦ precedes a metalanguage expression referring to wffs of L, it is
understood that the wff in the scope of a modality belongs to L (i.e. is a wff of L
in which no modality occurs).

Definition 5 (S5-model). An S5-model is a structure:

〈W,R,V〉

where W 6= ∅, V is a valuation of P w.r.t. elements of W, and R =W ×W.

Thus by S5-models we will mean here only these relational models in which
the accessibility relation R is universal. In the case of S5-models we have:

M, w |= �φ iff M, w |= φ for each w ∈ W, (5)

M, w |= ♦φ iff M, w |= φ for some w ∈ W. (6)

It is well-known that S5 is sound and complete w.r.t. the class of models of the
above kind.

Definition 6 (Accompanied S5-model). Let M = 〈W,V〉 be an L-model, σ be an
M-state, and R =W ×W. Let Mσ be an S5-model such that:

Mσ = 〈σ,R|σ,V|σ〉

Mσ is called the S5-model accompanied with M w.r.t. state σ.

It is obvious that for each L-model M and each state of the model there
exists exactly one S5-model accompanied with M w.r.t. the state. For each wff
A of L we have:
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Corollary 7. Let M be an L-model, σ be an M-state, and w ∈ σ. Then M, w |=
A iff Mσ, w |= A.

The following is true as well:

Lemma 1. For each M-state σ:

1. if A is a p-wff, then: σ # A iff Mσ |= ♦A,
2. if A is a n-wff, then: σ # A iff Mσ |= �A.

Proof. As for (1), it suffices to recall that for a p-wff A we have σ # A iff A is
true in at least one world of σ. On the other hand, the accessibility relation inMσ

is universal and thus Mσ |= ♦A iff Mσ, w |= A for at least one w ∈ σ.
Clause (2) is an immediate consequence of Corollary 3 and the fact that R|σ

is universal in σ. �

Let us also prove:

Lemma 2. Let A be a wff of L. For each M-state σ:

1. σ # ¬(A→ ⊥) iff Mσ |= �A,
2. σ # (A→ ⊥) iff Mσ |= ♦¬A,
3. σ # (¬A→ ⊥) iff Mσ |= ♦A.

Proof. As for (1), ¬(A→ ⊥) is a n-wff and hence, by Corollary 3, σ # ¬(A→ ⊥)
iff for each w ∈ σ: M, w 6|= (A → ⊥), that is, Mσ, w |= A for any w ∈ σ, which,
due to the universality of R|σ gives Mσ |= �A.

Concerning (2): σ # (A → ⊥) iff |(A → ⊥)|M ∩ σ 6= ∅ iff for some w ∈ σ :
M, w |= ¬A iff Mσ |= ♦¬A.

(3) is a direct consequence of (2). �

2.3. Epistemization

As it is well-known, S5 can be interpreted as an epistemic logic, where the box,
�, represents the knowledge operator, and the diamond, ♦, represents, generally
speaking, epistemic possibility. This suggests a kind of purely epistemic readings
of some metalanguage expressions of the form “σ # A”.

Consider:

σ # ¬(A→ ⊥) (7)

Due to clause (1) of Lemma 2, this can be read:

A is known in state σ (8)

where “A is known in state σ” means:

Mσ |= �A (9)

that is, �A is true in an S5-model whose domain is σ (more precisely: �A is true
in the S5-model whose domain is the M-state σ and which agrees with M on the
values of propositional variables w.r.t. worlds in σ).

Observe that, by Lemma 2, “being known in σ” does not differentiate between
n-wffs and p-wffs.
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Example 1. Let us consider the case of implication. In our setting (A→ B) is said
to be known in a state σ iff:

σ # ¬((A→ B)→ ⊥) (10)

It follows that:
Mσ |= �(A→ B) (11)

and:
for each w ∈ σ : M, w |= (A→ B) (12)

Thus an implication constitutes an item of knowledge in a state if, and only
if it is true in each world of the state. Or, to put it differently, an implication is
known in a state just in case it is a strict implication w.r.t. the state.

Example 2. Now consider the case in which the negation of an implication, i.e.
¬(A→ B), is known in state σ. This means:

σ # ¬(¬(A→ B)→ ⊥) (13)

which gives:
Mσ |= �¬(A→ B) (14)

Hence:
for each w ∈ σ : M, w 6|= (A→ B) (15)

So a negated implication is an item of knowledge in a state just in case the impli-
cation itself is false in each world of the state. It follows that a negated implication
is known in a state if, and only if it is permitted by the state.

Let us consider expressions of the form:

σ # (A→ ⊥) (16)

By Lemma 2 we have:

σ # (A→ ⊥) iff Mσ |= ♦¬A (17)

Hence an expression of the form (16) can be read:

¬A is epistemically possible in σ (18)

again uniformly for all the wffs of L.

Now let us consider:
σ # (¬A→ ⊥) (19)

By Lemma 2 we get:
σ # (¬A→ ⊥) iff Mσ |= ♦A (20)

Thus one can read (19) as:

A is epistemically possible in σ (21)

For convenience, we introduce:

Definition 7 (“Epistemic” modalities).

1. �A =df ¬(A→ ⊥)
2. ⊕A =df (¬A→ ⊥)
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3. 	A =df (A→ ⊥)

Observe that � is not the S5 necessity/knowledge operator. Let A be a wff of
L and let M = 〈W,R,V〉 be an S5-model. Consider an arbitrary but fixed world
w ∈ W. Clearly, �A is true in w iff A is true in w, while �A is true in w just in case
A is true in each world of W. Thus �A and �A have different truth-conditions
in worlds.4 But � behaves similarly as the S5 knowledge operator. One can easily
prove:

Corollary 8. Let A, B be wffs of L.

1. The following:

�(A→ B)→ (�A→ �B) (22)

�A→ A (23)

¬�A→ �¬�A (24)

are true in each L-model.
2. If A is true in each L-model, then �A is true in each L-model.

However, σ # �A only meansMσ |= �A (or equivalently: 〈σ,V|σ〉 |= ¬(A→ ⊥)).
Thus a wff known in a state σ of an L-model 〈W,V〉 must be true in each world of
the state σ, but not necessarily in each world of the whole model. In other words,
knowledge in a state is factive w.r.t. worlds of the state, but need not be factive
with regard to all worlds of the model. Yet, when one considers a singleton state,
it is impossible that a wff A is known in the state (in the sense of �) when A is
false in the (only) world of the state.

2.3.1. A philosophical comment. The standard philosophical concept of knowledge
conceives it as a true justified belief about the actual world. In the framework of
an epistemic logic supplemented with a relational semantics “being known in a
world w of a model” is explicated by “being true in each world w∗ of the model
such that w∗ is accessible from w”. When S5 is used as an epistemic logic, this
amounts to being true in each world of the model. Since we usually assume that
the actual world is among the possible worlds considered (or is represented by a
certain possible world of a model), the truth of �A in a model yields the truth of
A in the actual world, and �A is true in the actual world only if A is true in the
world.

Knowledge in a state behaves differently. If A is known in a state σ, it is true
in each world of the state and thus also in the actual world if the actual world
“is” in σ. This, however, need not be the case.

4However, since R is supposed to be universal, �A in true in an L-model or in an S5-model iff
�A is true in the model(s).
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3. Permittance and inconsistency

As above, we assume that M = 〈W,V〉 is an arbitrary but fixed L-model. The
M-permittance class of a wff A of L, in symbols: ‖A‖M, comprises all the M-states
that permit A. The M-permittance class of a set of wffs X, ‖X‖M, in turn, is the
intersection of M-permittance classes of elements of X. More formally:

Definition 8 (Permittance class).

1. ‖A‖M = {σ ⊆ W : σ 6= ∅ and σ # A}
2. ‖X‖M = {σ ⊆ W : σ # B for each B ∈ X}.

Definition 9. X has a non-empty permittance class iff there exists an L-model M
such that ‖X‖M 6= ∅.

When {A} has a non-empty permittance class, we will be saying briefly: “A
has a non-empty permittance class.”

One can show that some inconsistent sets of wffs have non-empty permittance
classes. For clarity, let us first introduce:

Definition 10 (Inconsistent sets). A set of wffs X of L is:

1. inconsistent iff
⋂
B∈X

|B|M = ∅ for each L-model M;

2. plainly inconsistent iff:
(a) for some wff A, both A ∈ X and p¬Aq ∈ X, or
(b) for some wff A ∈ X, {A} is inconsistent.

Clearly, permittance classes of plainly inconsistent sets are always empty.
However, the situation is different in the case of some sets of wffs which are incon-
sistent, but not plainly inconsistent.

For example, {A,A→ ⊥} is inconsistent. But the following holds:

Corollary 9. Let A be a p-wff of L such that p♦A→ �Aq /∈ S5. Then there exists
an L-model M such that ‖{A,A→ ⊥}‖M 6= ∅.

Proof. When p♦A → �Aq /∈ S5, there exists a S5-model M = 〈W,R,V〉 and a
world w ∈ W such that M, w |= ♦A and M, w |= ♦¬A. So for some w1 ∈ W :
M, w1 |= A, and for some w2 ∈ W :M, w2 |= ¬A. Consider the following L-model
M:

〈{w1, w2},V|{w1, w2}〉
As both A and (A→ ⊥) are p-wffs, it is easily seen that for the state {w1, w2} of
the model we have:

{w1, w2}# A

{w1, w2}# (A→ ⊥)

Hence ‖{A, (A→ ⊥)}‖M 6= ∅. �

In particular, the permittance class of {p, p→ ⊥} is non-empty.
Thus the following is true:
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Corollary 10. There exist: inconsistent sets of wffs of L and L-models such that
the sets have non-empty permittance classes in the models.

Here is another example of an inconsistent set which has a non-empty per-
mittance class.

Example 3. The set {p → q, p,¬q} is inconsistent, but not plainly inconsistent.
Let M = 〈W,V〉 be an L-model such that for some w1, w2 ∈ W:

• V(p, w1) = 0,
• V(q, w1) = 0,
• V(p, w2) = 1,
• V(q, w2) = 0.

Clearly we have:

• M, w2 |= p and hence {w1, w2}# p,
• M, w1 |= (p→ q) and thus {w1, w2}# (p→ q),
• M, w1 |= ¬q as well as M, w2 |= ¬q; therefore {w1, w2}# ¬q.

Thus ‖{p→ q, p,¬q}‖M 6= ∅.

4. Transmission of permittance

4.1. Definition and basic properties

Let us now introduce:

Definition 11 (Transmission of permittance). X ↪→L A iff for each L-model M
and each M-state σ:

if σ ∈ ‖X‖M, then σ ∈ ‖A‖M.

The intuitive content of the above concept is: if each element of X is permitted
by a state, then A is permitted by the state. This condition is supposed to hold
for each L-model and each state of the model.

Let “σ # X” abbreviate “for each B ∈ X : σ # B”.

Corollary 11. X ↪→L A iff the following condition:

if σ # X, then σ # A (25)

is fulfilled by each state σ of any L-model.

↪→L is a consequence relation. One can easily prove:

Corollary 12. ↪→L has the following properties:

(Overlap): If A ∈ X, then X ↪→L A.

(Dilution): If X ↪→L A and X ⊆ Y , then Y ↪→L A.

(Cut for sets): If X ∪ Y ↪→L A and X ↪→L B for every B ∈ Y , then X ↪→L A.

↪→L is not structural, however. The following examples illustrate this:5

5For brevity, we use, here and below, object-level language expressions instead of their metalin-
guistic names.
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Example 4.
{¬(p ∧ ¬q), p} ↪→L q (26)

To prove (26) suppose that for some state σ of an L-model M it holds that:

(1) σ # ¬(p ∧ ¬q), and
(2) σ # p.

By (2) there exists w ∈ σ, say, w1, such that M, w1 |= p. But since (1) holds as
well, we have M, w1 |= ¬(p ∧ ¬q) and hence M, w1 |= q. Thus σ # q.

Example 5.
{¬(p ∧ ¬¬q), p} 6↪→L ¬q (27)

To see this it suffices to consider an L-model M = 〈{w1, w2},V〉 in which V(p, w1) =
1, V(q, w1) = 0, V(p, w2) = 0, and V(q, w2) = 1. We get:

• M, w1 |= p,
• M, w1 |= ¬(p ∧ ¬¬q)),
• M, w2 |= ¬(p ∧ ¬¬q))

Thus {w1, w2}# {¬(p∧¬¬q), p}. On the other hand, since M, w1 6|= ¬q, we have
{w1, w2} 6# ¬q.

Generally speaking, ↪→L is not structural because substitution can change
the categories of wffs, that is, can turn p-wffs into n-wffs, or n-wffs into p-wffs.6

4.2. Transmission of permittance vs. entailment

Entailment in L, |=L, can be defined by:

Definition 12 (Entailment in L). X |=L A iff for each L-model M:⋂
B∈X

|B|M ⊆ |A|M

Entailment in L amounts to entailment determined by Classical Propositional
Logic.

Transmission of permittance is a special case of entailment. By Corollary 6
we get:

Corollary 13. If X ↪→L A, then X |=L A.
Hence ↪→L is a truth- preserving consequence relation.

The converse of Corollary 13 does not hold. The following examples illustrate
this:

Example 6.
¬p ∨ ¬q 6↪→L ¬(p ∧ q) (28)

For, consider an L-model M = 〈{w1, w2},V〉 such that V(p, w1) = 0, V(p, w2) = 1,
and V(q, w2) = 1. Since ¬p ∨ ¬q is a p-wff, {w1, w2} # ¬p ∨ ¬q. On the other
hand, ¬(p∧q) is a n-wff and we have {w1, w2} 6# ¬(p∧q) because M, w2 |= (p∧q).

6This can happen when the wff being substituted is a propositional variable or has the form
¬ . . .¬p , where p is a propositional variable.
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Example 7.

{p→ q,¬q} 6↪→L ¬p (29)

To see this it suffices to consider an L-model M = 〈{w1, w2},V〉 in which V(p, w1) =
0, V(q, w1) = 0, V(p, w2) = 1, and V(q, w2) = 0. Since M, w1 |= (p → q), we
get {w1, w2} # (p → q). Clearly, {w1, w2} # ¬q. But {w1, w2} 6# ¬p because
V(p, w2) = 1.

4.3. Paraconsistency

As we have shown in Section 3, some inconsistent sets have non-empty permittance
classes. It follows that ↪→L is paraconsistent in the following sense of the word:
it is not the case that for every inconsistent set X and every wff B it holds that
X ↪→L B.

Example 8. The set {p→ q, p,¬q} has a non-empty permittance class (see Exam-
ple 3). Hence, in particular:

{p→ q, p,¬q} 6↪→L r (30)

Example 9. The set {p, p→ ⊥} is inconsistent, but has a non-empty permittance
class. One can easily show that:

{p, p→ ⊥} 6↪→L q (31)

Observe, however, that we still have:

{p,¬p} ↪→L q (32)

4.4. Translation ( )∗

The operation ( )∗ assigns to a wff of L the corresponding wff of L. It is defined
as follows:

Definition 13.

1. If A is a p-wff, then (A)∗ = ♦A.
2. If A is a n-wff, then (A)∗ = �A.

Let us stress that A in ♦A or in �A represents a wff of L. The operation ( )∗

is performed on A only once; the subformulas of A remain unaffected. In other
words, ( )∗ is a kind of “surface translation” of wffs of L into wffs of L.7

For convenience, we put:

(X)∗ =df {(A)∗ : A ∈ X}

Let us now prove:

Lemma 3. If M = 〈W,R,V〉 is a S5-model such that M |= (X)∗, then W # X.

7The idea of using translations into S5 in constructing paraconsistent logics goes back to

Jaśkowski (cf. [3], and [4] for an English translation). However, Jaśkowski’s translation is de-

fined recursively and enables an introduction of “discussive” connectives. The operation ( )∗

behaves differently.
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Proof. First observe thatM is the S5-model accompanied with an L-model M =
〈W,V〉 w.r.t. the M-state W.

The elements of (X)∗ are either of the form ♦B or of the form �B, where
B ∈ X.

If ♦B ∈ (X)∗, then, by Lemma 1, M |= ♦B yields W # B.

The case in which �B ∈ (X)∗ is analogous. �

The following holds:

Theorem 1. X has a non-empty permittance class iff there exists a S5-model M
such that M |= (X)∗.

Proof. (⇒). Let M be an L-model for which ‖X‖M 6= ∅. Let σ ∈ ‖X‖M. We
consider the S5-model Mσ accompanied with M w.r.t. σ, and we apply Lemma
1.

(⇐). By Lemma 3. �

Example 10. As we have shown (see Example 3), the inconsistent set {p→ q, p,¬q}
has a non-empty permittance class. The following takes place on the modal side:

M{w1,w2} |= {♦(p→ q),♦p,�¬q} (33)

where M{w1,w2} is the S5-model accompanied (w.r.t. state {w1, w2}) with the
L-model considered in Example 3.

However, the following holds:

Corollary 14. If X is inconsistent and each element of X is a n-wff, then the
permittance class of X is empty.

Proof. Suppose that the permittance class of X is non-empty. Then, by Theorem
1, for some S5-modelM we haveM |= (X)∗. But the elements of (X)∗ are of the
form �A, where A ∈ X. Since W is non-empty, there exists a world w of M such
that M, w |= X. It follows that X is consistent. �

The situation can be different when X contains some p-wffs.

4.5. Transmission of permittance vs. global S5-entailment

Recall that Φ stands for a set of wffs of L (i.e. the modal extension of L), and φ
is a metalanguage variable for wffs of L.

Let us introduce:

Definition 14 (Global S5-entailment). Φ |=S5 φ iff for each S5-model M: if M |=
Φ, then M |= φ.

We will now prove:

Theorem 2 (Reduction modulo ( )∗). X ↪→L A iff (X)∗ |=S5 (A)∗
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Proof. Suppose that X ↪→L A, but (X)∗ 6|=S5 (A)∗. Thus for some S5-model
M = 〈W,R,V〉 we have M |= (X)∗ and M 6|= (A)∗. But M is accompanied
with the L-model M = 〈W,V〉 w.r.t. W, that is, M =MW . By Lemma 3 we get
W # X and hence, due to the transmission of permittance, W # A. If A is a
p-wff, then, by Lemma 1,M |= ♦A, that is,M |= (A)∗. A contradiction. Similarly,
if A is a n-wff, by Lemma 1 we get M |= �A, i.e. M |= (A)∗. A contradiction
again.

Now suppose that (X)∗ |=S5 (A)∗, but X 6↪→L A. Then there exists a state
σ of a certain L-model M such that σ # X and σ 6# A. We consider the S5-
model Mσ accompanied with M w.r.t. σ. By Lemma 1 we get Mσ |= (X)∗ and
Mσ 6|= (A)∗. A contradiction. �

According to Theorem 2, transmission of permittance amounts to (global)
S5-entailment among the relevant ∗-wffs. This does not mean that transmission
of permittance can be identified with global S5-entailment. Recall that the ∗-wffs
are either of the form �A or of the form ♦A, where A is a wff of the non-modal
language L (and thus does not involve modal operators).

Remark 5. Necessity and possibility are, in a sense, expressible in L (cf. section
2.2). But when we have φ |=S5 ψ for L-wffs φ, ψ which are of neither of the forms:
�A, ♦A, the systematic replacement in φ and ψ of �A by ¬(A → ⊥) as well
as of ♦A by (¬A → ⊥) need not turn S5-entailment between φ and ψ into the
transmission of permittance between the resultant wffs of L. For example, we have:

¬�p |=S5 �¬�p (34)

By the systematic replacement we get:

¬¬(p→ ⊥) ↪→L ¬(¬¬(p→ ⊥)→ ⊥) (35)

(35) does not hold, however. To see this let us take an L-model M∗ = 〈{w1, w2},V〉
such that V(p, w1) = 0 and V(p, w2) = 1. Clearly, we have:

{w1, w2}# ¬¬(p→ ⊥) (36)

since M∗, w1 |= ¬¬(p→ ⊥). At the same time we have:

{w1, w2} 6# ¬(¬¬(p→ ⊥)→ ⊥) (37)

because M∗, w2 6|= ¬(¬¬(p→ ⊥)→ ⊥).

To sum up: Theorem 2 does not reduce the “logic of permittance” to S5, but
shows that one can “calculate” transmission of permittance by well-known means.

4.6. What is retained and what is lost

4.6.1. The case of single wffs. Let us first prove:

Lemma 4. If B |=L A and (a) B and A are p-wffs, or (b) B and A are n-wffs, or
(c) B is a n-wff and A is a p-wff, then B ↪→L A.
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Proof. If B |=L A, then |=L (B → A) and hence p�(B → A)q ∈ S5.
Assume that B and A are p-wffs. Suppose that ♦B 6|=S5 ♦A. So there exists

an S5-modelM = 〈W,R,V〉 such thatM |= ♦B andM 6|= ♦A. HenceM, w 6|= A
for each w ∈ W, and M, w |= B for some w ∈ W. It follows that for some w ∈ W
we have M, w 6|= (B → A) and therefore p�(B → A)q 6∈ S5. A contradiction.
Thus ♦B |=S5 ♦A and hence, by Theorem 2, B ↪→L A.

Assume that B and A are n-wffs. Suppose that �B 6|=S5 �A. So for some
S5-model M = 〈W,R,V〉 we get: M, w |= B for any w ∈ W, and M, w 6|= A for
some w ∈ W. Thus p�(B → A)q 6∈ S5. A contradiction. Therefore, by Theorem
2, B ↪→L A.

Finally, assume that B is a n-wff and A is a p-wff. Suppose that �B 6|=S5 ♦A.
Thus, for some S5-model M = 〈W,R,V〉, M, w |= B for any w ∈ W, and
M, w 6|= A for each w ∈ W. Hence p�(B → A)q 6∈ S5. A contradiction again.
Therefore, by Theorem 2, B ↪→L A. �

Thus, for instance, the following hold:

p ↪→L ¬¬p (38)

¬¬p ↪→L p (39)

(p→ q) ↪→L (¬q → ¬p) (40)

(¬q → ¬p) ↪→L (p→ q) (41)

p ↪→L (q → p) (42)

(p→ q) ∧ p ↪→L q (43)

(p ∨ q) ∧ ¬q ↪→L p (44)

(p ∨ ¬q) ∧ q ↪→L p (45)

(p→ (q → r)) ↪→L ((p→ q)→ (p→ r)) (46)

(p→ (q → r)) ↪→L (p ∧ q → r) (47)

(p ∧ q → r) ↪→L (p→ (q → r)) (48)

(p→ (q → r)) ↪→L (q → (p→ r)) (49)

((p→ q) ∧ (q → r)) ↪→L (p→ r) (50)

¬(p ∧ q) ↪→L (¬p ∨ ¬q) (51)

¬(p ∨ q) ↪→L (¬p ∧ ¬q) (52)

¬(p ∧ ¬q) ↪→L (p→ q) (53)

¬(p→ q) ↪→L (p ∧ ¬q) (54)

Observe, however, that the converses of (51), (52), (53) and (54) do not hold.
The counterpart of Modus Tollendo Tollens does not hold either, i.e.:

((p→ q) ∧ ¬q) 6↪→L ¬p (55)

because:
♦((p→ q) ∧ ¬q) 6|=S5 �¬p (56)

Hence:
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Corollary 15. There are cases in which: B is a p-wff, A is a n-wff, B |=L A, and
B 6↪→L A.

Yet, the following holds:

((p→ q) ∧ ¬q) ↪→L ⊕¬p (57)

(Recall that ⊕¬p claims that ¬p is epistemically possible in a state.) This can be
generalized.

Corollary 16. If B |=L A, B is a p-wff and A is a n-wff, then B ↪→L ⊕A.

Proof. If B |=L A, then p�(B → A)q ∈ S5. Suppose that ♦B 6|=S5 ♦⊕ A. So for
some S5-model M = 〈W,R,V〉 there exists w1 ∈ W such that M, w1 |= B and,
at the same time, M, w 6|= ⊕A for any w ∈ W. Recall that ⊕A =df (¬A → ⊥).
Hence for each w ∈ W we have M, w 6|= A. Therefore p�(B → A)q 6∈ S5. A
contradiction. �

4.6.2. The case of sets of wffs. The direct counterpart of Modus Ponens holds for
↪→L (cf. 43). But we have:8

{p→ q, p} 6↪→L q (58)

So conjunction behaves is a non-standard way in the context of ↪→L: A1 ∧ . . . ∧
An ↪→L B need not be tantamount to {A1, . . . , An} ↪→L B. The reason is that a
permittance class of a set of wffs need not be equal with the permittance class of
a conjunction of all the wffs in the set.9

Yet, the following is true:
{p→ q,�p} ↪→L q (59)

Recall that �p can be read “p is known in a state in question”.
Here are further “negative” examples:

{p, q} 6↪→L (p ∧ q) (60)

{p, p→ ⊥} 6↪→L (p ∧ ¬p) (61)

{p ∨ ¬q, q} 6↪→L p (62)

{p→ q, q → r} 6↪→L (p→ r) (63)

Observe, however, that the following hold:

{�p, q} ↪→L (p ∧ q) (64)

and similarly for q,
{�p,�q} ↪→L �(p ∧ q) (65)

8Since {♦(p→ q),♦p} 6|=S5 ♦q. (43) holds because ♦((p→ q) ∧ p) |=S5 ♦q.
9For example, take an L-model M = 〈{w1, w2},V〉 such that V(p, w1) = 0, V(q, w1) = 0,
V(p, w2) = 1, and V(q, w2) = 0. Clearly, {w1, w2} ∈ ‖(p → q), p‖M, but {w1, w2} 6∈ ‖(p →
q) ∧ p‖M. In general, a conjunction of p-wffs carries information that the conjuncts are simulta-

neously true in some world(s) of a state, while the information carried by the set of conjuncts
amounts to the claim that each conjunct is true in a certain world of the state. When we have a

“mixed” conjunction (that is, involving both p-wff and n-wffs), the information carried by n-wffs
“weakens”: the consecutive conjuncts, n-wffs included, are supposed to simultaneously hold in a
certain world of a state.
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{p ∨ ¬q,�q} ↪→L p (66)

{¬(¬p ∧ q), q} ↪→L p (67)

{�(p→ q),�(q → r)} ↪→L �(p→ r) (68)

{¬(p ∧ ¬q),¬(q ∧ ¬r)} ↪→L ¬(p ∧ ¬r) (69)

It happens that conjunction behaves in the “standard” way in the context of
↪→L although the conjuncts belong to diverse categories, as in:

{p→ q,¬(q ∧ ¬r)} ↪→L (p→ r) (70)

{¬p→ q,¬p} ↪→L q (71)

{p ∨ q,¬q} ↪→L p (72)

{¬p→ q,¬q} ↪→L p (73)

Let us now turn to inconsistent sets. As we have shown, ↪→L is paraconsistent.
But, for instance, we still have:

{p→ q, p,¬q} ↪→L (¬p ∨ q) (74)

{p→ q, p,¬q} ↪→L (¬(p→ q) ∨ ¬p) (75)

{p→ q, p,¬q} ↪→L ((¬(p→ q) ∨ ¬p) ∨ q) (76)

{r, s, (r → p), (s→ ¬p)} ↪→L (p ∨ ¬p) (77)

{r, s,�(r → p),�(s→ ¬p)} ↪→L (�r ∨�s) (78)

5. Question raising

5.1. Questions

Let us now augment the language L with questions. In order to achieve this we
enrich the vocabulary of L with the following signs: {, }, ?, and the comma. The
new language is labelled as L?. Declarative well-formed formulas of L? are simply
the wffs of L. Questions of L? are expressions of the language falling under the
schema:

? {A1, . . . , An} (79)

where n > 1 and A1, . . . , An are nonequiform, i.e. pairwise syntactically distinct,
wffs of L. An expression of the form (79) can be read:

Is it the case that A1, or . . . , or is it the case that An? (80)

If ? {A1, . . . , An} is a question, then each of the wffs A1, . . . , An is called a direct
answer to the question, and these are the only direct answers to the question. A
direct answer is a possible answer. Moreover, it constitutes a sufficient answer: a
direct answer is supposed to provide neither less nor more information than it is
requested by the corresponding question. It is not assumed that a direct answer
must be true.10

10For details of this approach to propositional questions of formal languages see, e.g., [11], Chap-
ter 2.
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We shall use Q, Q1, . . . as metalanguage variables for questions. The set of
direct answers to a question Q will be denoted by dQ.

5.1.1. Soundness of a question. We do not assign truth or falsity to questions.
However, we introduce the concepts of soundness of a question in a world of an
L-model and in a state of an L-model.11

Definition 15 (Soundness of a question).

1. A question Q is sound in a world w of an L-model iff at least one direct
answer to Q is true in w.

2. A question Q is sound in a state σ of an L-model iff Q is sound in at least
one world of the state σ.

Clearly, there are questions which are not sound in some worlds of certain
L-models. Similarly, there are questions which are not sound in any states of some
L-models. For example, ? {p, q} is not sound in any state of an L-model in which
for each world w of the model it holds that V(p, w) = V(q, w) = 0. On the other
hand, ? {p,¬p} is sound in each state of any L-model, and in each world of the
model.

5.2. From permittance to soundness: proto-raising

Let us now define the following relation between sets of declarative formulas of L?

(i.e. wffs of L) and questions of L?.

Definition 16 (Proto-raising). A set of wffs X proto-raises a question Q (in sym-
bols: RP(X,Q)) iff for each L-model M and each M-state σ:

(•) if σ ∈ ‖X‖M, then M, w |= A for some w ∈ σ and A ∈ dQ.

The underlying intuition is: if all the wffs in X are permitted by a state, then
Q is sound in the state, that is, at least one direct answer to Q is true in at least
one world of the state.

We have:

Lemma 5. Let n > 1. RP(X, ? {A1, . . . , An}) iff X ↪→L A1 ∨ . . . ∨An.

Proof.
(⇒). Suppose that X 6↪→L A1 ∨ . . . ∨ An. So there exist an L-model M and an
M-state σ such that σ # X and σ 6# A1 ∨ . . . ∨An. Since n > 1, A1 ∨ . . . ∨An is
a p-wff. Thus there is no w ∈ σ such that M, w |= Ai, where 1 ≤ i ≤ n. Hence it
is not the case that RP(X, ? {A1, . . . , An}).
(⇐) Take an L-model M = 〈W,V〉 and an M-state σ. Let σ # X. Then σ #
A1 ∨ . . .∨An. Since n > 1, A1 ∨ . . .∨An is a p-wff. ThusMσ |= ♦(A1 ∨ . . .∨An).
Hence there exists w ∈ σ such thatMσ, w |= A1∨ . . .∨An. ThereforeMσ, w |= Ai
for some 1 ≤ i ≤ n and thus M, w |= Ai for some 1 ≤ i ≤ n. It follows that
RP(X, ? {A1, . . . , An}). �

Lemma 5 together with Corollary 13 yield:

11Cf. [9].
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Corollary 17. If RP(X, ? {A1, . . . , An}), then X |=L A1 ∨ . . . ∨An.
Thus if X proto-raises Q, a disjunction of all the direct answers to Q is (classically)
entailed by X. Hence:

Corollary 18. Let w be a world of an L-model. If RP(X,Q) and all the wffs of X
are true in w, then Q is sound in w.
In other words, proto-raising secures the transmission of truth into soundness
(w.r.t. worlds), which, in turn, constitutes the basic criterion of adequacy of an
explication of the intuitive notion “a question Q arises from a set of declaratives
X” (cf. [9], [10], [11]). However, Definition 16 cannot be regarded as providing
an adequate explication of the concept. Proto-raising allows for a situation which
seems forbidden in view of the intuitive notion: the permittance of all the elements
of X in a state transforms into knowledge of some direct answer(s) to Q in the
state. But if Q arises from X, the permittance of (all the elements of) X by a state
is insufficient for knowing a direct answer to Q in the state; otherwise X would
resolve Q and thus Q would not arise from X.

5.3. Giving rise

The following definition can be regarded as providing an explication of the intuitive
notion “a question arises from a set of declaratives”. Again, we assume that X is
a set of declarative formulas of L?, and Q is a question of the language.

Definition 17 (Giving rise). A set of wffs X gives rise to a question Q (in symbols:
R(X,Q)) iff RP(X,Q) and for each A ∈ dQ : X 6#L A.
Thus X gives rise to Q just in case X proto-raises Q, but there is no transmission
of permittance between X and direct answers to Q.

We have:

Corollary 19. If X 6#L A, then X 6#L �A.
Thus the permittance of all the elements of X by a state does not yield the
knowledge of any direct answer to Q in the state. To be more precise, there is no
transmission of permittance between X and formulas which express that direct
answers to Q are known.

By Lemma 5 and Definition 17 we get:

Corollary 20. Let Q = ? {A1, . . . , An}. Then R(X,Q) iff

1. X ↪→L A1 ∨ . . . ∨An, and
2. X 6↪→L Ai for i = 1, . . . , n.

Therefore, by the Reduction Theorem (i.e. Theorem 2):

Corollary 21. R(X, ? {A1, . . . , An}) iff

1. (X)∗ |=S5 ♦(A1 ∨ . . . ∨An) and
2. (X)∗ 6|=S5 (Ai)

∗ for i = 1, . . . , n.

Hence the following examples come with no surprise:12

R(p, q, ? {p ∧ q,¬(p ∧ q)}) (81)

12For brevity, we simply list the elements of sets of wffs.
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R(¬p ∨ ¬q, ? {¬(p ∧ q),¬(p ∨ q)}) (82)

R(¬p ∧ ¬q, ? {¬(p ∨ q), p ∧ q}) (83)

R(p→ q,¬q, ? {p,¬p}) (84)

Observe that the raised questions have direct answers which are classically entailed
by the raising sets. This is not a general rule, however.

R(p ∨ ¬p, ? {p,¬p}) (85)

R(p ∨ q, ? {p,¬p}) (86)

R(p ∨ q, ? {p, q}) (87)

R(p ∨ q, ? {p ∧ q,¬(p ∧ q)}) (88)

R(p ∨ q, ? {p ∧ q, p ∧ ¬q,¬p ∧ q}) (89)

R(p→ q ∨ r, ? {p→ q, p→ r}) (90)

R(p→ q ∨ r, p, ? {q, r}) (91)

R(¬(q ∧ r), ? {¬q,¬r}) (92)

R(p ∧ q → r, ? {p→ r, q → r}) (93)

R(p ∧ q → r,¬r, ? {¬p,¬q}) (94)

R((p ∨ q) ∨ r, ? {p, q ∨ r}) (95)

R(p, ? {⊕¬p,�p}) (96)

R(p→ ⊥, ? {⊕p,�¬p}) (97)

5.4. Question raising by inconsistencies

Questions often arise from inconsistencies. The presented account of question rais-
ing does justice to that. To be more precise, we are able to model the case in
which questions arise from inconsistent sets with non-empty permittance classes.
The following holds:

Corollary 22. If R(X,Q), then the permittance class of X is non-empty.

Proof. By assumption, dQ 6= ∅. Let A ∈ dQ. If R(X,Q), then X 6↪→L A, so there
exist an L-model M and an M-state σ such that σ # X as well as σ 6# A.
Therefore X has a non-empty permittance class. �

Hence plainly inconsistent sets do not give rise to (in the sense of Definition
17) any questions. Similarly, by Corollary 14, inconsistent sets which comprise only
n-wffs do not give rise to questions. The case of inconsistent sets having non-empty
permittance classes in different, however.

Let us start with examples. The following hold:

R(p→ q, p,¬q, ? {¬(p→ q),¬p, q}) (98)

R(p→ q, p,¬q, ? {¬(p→ q),¬p}) (99)

R(p→ q, p,¬q, ? {¬(p→ q), q}) (100)

R(p→ q, p,¬q, ? {¬p, q}) (101)

R(r, s, r → p, s→ ¬p, ? {p,¬p}) (102)
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R(r, s,�(r → p),�(s→ ¬p), ? {�r,�s}) (103)

Let us now introduce:

Definition 18 (Complement).

1. If A is of the form ¬C, then A is C.
2. If A is not of the form ¬C, then A is ¬A.

Recall that, by Theorem 1, X has a non-empty permittance class iff (X)∗

has a S5-model.

Theorem 3. If {A1, . . . , An}, where n > 1, is inconsistent, but has a non-empty
permittance class, then R({A1, . . . , An}, ? {A1, . . . , An}).

Proof. If {A1, . . . , An} is inconsistent, then for each L-model M = 〈W,V〉 and each
w ∈ W we have M, w 6|= {A1, . . . , An} and hence M, w |= A1 ∨ . . . ∨ An. Suppose
that RP({A1, . . . , An}, ? {A1, . . . , An}) does not hold. Thus {A1, . . . , An} 6↪→L

A1 ∨ . . . ∨ An and hence ({A1, . . . , An})∗ 6|=S5 ♦(A1 ∨ . . . ∨ An). So there ex-
ists a world w of an S5-model M such that M, w 6|= ♦(A1 ∨ . . . ∨ An). Thus the
argument of ♦ is false in each w ∈ W. ThereforeM, w |= ¬(A1∨ . . .∨An), that is,
M, w |= ¬A1∧ . . .∧¬An. ButM, w |= ¬Ai iffM, w |= Ai for 1 ≤ i ≤ n. It follows
that there exists a L-model M for which it holds that M, w |= {A1, . . . , An} and
thus the analysed set is consistent. A contradiction.

Since {A1, . . . , An} has a non-empty permittance class, there exist: an L-
model M′ = 〈W ′,V ′〉 and an M′-state σ such that σ # Ai for 1 ≤ i ≤ n. Suppose
that {A1, . . . , An} ↪→L Ai for some 1 ≤ i ≤ n. Thus σ # Ai and hence σ 6# Ai. A
contradiction. �

According to Theorem 3, an at least two-element finite inconsistent set of
wffs gives rise to a question whose direct answers are complements of the wffs in
the set – provided that the set has a non-empty permittance class. For instance:

R(p ∨ q → r, p ∧ ¬r, ? {¬(p ∨ q → r),¬(p ∧ ¬r)}) (104)

R(p, p→ ⊥, ? {¬p,¬(p→ ⊥)}) (105)

R(r, s, r → p, s→ ¬p, ? {¬r,¬s,¬(r → p),¬(s→ ¬p)}) (106)

The “complement“ question is also raised by the empty set. In order to show
this we need an auxiliary concept and two lemmas.

Definition 19. Let Q be a question and C be a wff. By QC we designate a question
such that dQC = dQ ∪ {C}.

When C /∈ dQ, any QC may be called an extension of Q by C.13

Lemma 6. If RP(X ∪ {B}, Q), then RP(X,QB).

13Despite of their form, questions of L? are not sets of direct answers, but object-language

expressions. Thus, for example, ? {p, q} 6= ? {q, p}, although {p, q} = {q, p}. Hence QC denotes
a class of expressions.
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Proof. Let Q = ? {A1, . . . , An} and QB = ? {A1, . . . , An, B}.
Suppose that RP(X, ? {A1, . . . , An, B}) does not hold. Then, by Lemma 5,

X 6↪→L A1∨. . .∨An∨B. Hence for some L-model M = 〈W,V〉 and some M-state σ
we have: σ # X and σ 6# A1∨. . .∨An∨B. It follows that M, w |= A1∧. . .∧An∧B
for each w ∈ σ. Therefore Mσ |= �(A1 ∧ . . . ∧ An ∧B) and hence Mσ 6|= ♦(A1 ∨
. . . ∨ An) as well as Mσ |= �B. Thus Mσ |= (B)∗ regardless of whether B is a
p-wff or a n-wff, and Mσ 6|= (A1 ∨ . . . ∨An)∗. Since σ # X, we have Mσ |= (X)∗

and hence Mσ |= (X ∪ {B})∗. Therefore (X ∪ {B})∗ 6|=S5 (A1 ∨ . . .∨An)∗. Thus,
by Theorem 2, X ∪ {B} 6↪→L A1 ∨ . . . ∨ An. Since ? {A1, . . . , An} is a question,
n > 1 and thus Lemma 5 applies. Hence RP(X ∪ {B}, ? {A1, . . . , An}) does not
hold as well.

We have assumed that B is the “last” direct answer to QB . Yet, nothing

essential changes when we place B at some other position. �

Lemma 7 (Deduction). If R(X ∪ {B}, Q), then R(X,QB).

Proof. If R(X ∪ {B}, Q), then X ∪ {B} has a non-empty permittance class. Let
σ be an element of the class. Since σ # B, we get σ 6# B and hence X 6↪→L B.
Clearly X 6↪→L A for any A ∈ dQ. On the other hand, by Definition 17 and Lemma
6, R(X ∪ {B}, Q) yields RP(X,QB). �

Lemma 7 enables us to derive new examples from already established ones.
Thus, for instance, from (101) we get:

R(p→ q, p, ? {¬p, q}) (107)

while (99) gives:
R(p→ q,¬q, ? {¬(p→ q),¬p}) (108)

From (100) we get:
R(p→ q, p, ? {¬(p→ q), q}) (109)

However, the most important consequence of Lemma 7 is:

Theorem 4. Let {A1, . . . , An}, where n > 1, be an inconsistent set which has a
non-empty permittance class. Then R(∅, ? {A1, . . . , An}).

Proof. By Theorem 3 and Lemma 7 (since {A1, . . . , An} ∪ {Ai} = {A1, . . . , An}).
�

Thus, for instance:

R(∅, ? {¬(p→ q),¬p, q}) (110)

R(∅, ? {¬p,¬(p→ ⊥)}) (111)

By the way, the following holds as well:

R(∅, ? {�p,�¬p}) (112)

because we have:

R(p→ ⊥,¬p→ ⊥, ? {¬(p→ ⊥),¬(¬p→ ⊥)}) (113)
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5.5. Some comparisons

The intuitive notion “a question arises from a set of declaratives” is explicated in
Inferential Erotetic Logic14 by the concept “a set of declaratives evokes a question”.
Leaving aside the general schema of definition of evocation15, in the case of the
language L evocation can be defined as follows:

Definition 20 (Evocation of questions). A set of wffs X evokes a question Q iff X
entails a disjunction of all the direct answers to Q, but does not entail any single
direct answer to Q.
By “entails” we mean “entails in L”; cf. Definition 12. We write E(X,Q) for “X
evokes Q”.

Clearly we have:

Corollary 23. Let Q = ? {A1, . . . , An}. Then E(X,Q) holds iff

1. X |=L A1 ∨ . . . ∨An, and
2. X 6|=L Ai for i = 1, . . . , n.

For examples of evocation see, e.g., [9], [10], [11].
Since no direct answer to an evoked question is (classically) entailed by the

evoking set, we get:

Corollary 24. If E(X,Q), then X is consistent.
So evocation behaves differently than giving rise understood in the sense of

Definition 17; as we have shown, some inconsistent sets give rise to questions.
However, evocation can be defined in terms of giving rise. Let us introduce:

Definition 21. �X =df {�A : A ∈ X}
Recall that �A abbreviates ¬(A→ ⊥) and thus can be read “A is known”.

Theorem 5. E(X, ? {A1, . . . , An}) iff R(�X, ? {A1, . . . , An}).

Proof. For conciseness, let us write “A1 ∨ . . . ∨An” as “
∨
A1,n”.

(⇒) If E(X, ? {A1, . . . , An}), then X |=L

∨
A1,n.

Suppose that RP(�X, ? {A1, . . . , An}) is not the case. Thus �X 6↪→L

∨
A1,n. So

there exists an L-model M = 〈W,V〉 such that for some M-state σ: σ # �X
and σ 6#

∨
A1,n. Since

∨
A1,n is a p-wff, it follows that M, w 6|=

∨
A1,n for any

w ∈ W. The elements of �X are n-wffs of the form ¬(B → ⊥). Hence M, w |= X
for any w ∈ σ. Thus X 6|=L

∨
A1,n. A contradiction.

14Generally speaking, Inferential Erotetic Logic (IEL for short) is a logic that analyses inferences

in which questions play the role of conclusions and proposes criteria of validity for these inferences.
For IEL see e.g. [9], [10], [11].
15Formulated in terms of multiple-conclusion entailment (mc-entailment for short): a set of wffs

X evokes a question Q iff X mc-entails the set of direct answers to Q, but does not mc-entail any
singleton set whose element is a direct answer to Q. The concept of mc-entailment generalizes the

concept of entailment. Mc-entailment is a relation between sets of wffs. Roughly, X mc-entails
Y iff the truth of all the wffs in X warrants the existence of a true wff in Y . For mc-entailment
see [8].
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Since E(X, ? {A1, . . . , An}), then X 6|= Ai for 1 ≤ i ≤ n. Thus for each i,
where 1 ≤ i ≤ n, there exists an L-model M = 〈W,V〉 such that for some w ∈ W:
M, w |= X and M, w 6|= Ai. Hence {w}# �X and {w} 6# Ai, that is, �X 6↪→L Ai.

Therefore R(�X, ? {A1, . . . , An}).
(⇐). Assume that R(�X, ? {A1, . . . , An}). Hence �X ↪→L

∨
A1,n. Suppose that

X 6|=L

∨
A1,n. So there exists a singleton state, {w} of a certain L-model such

that {w}# �X and {w} 6#
∨
A1,n. Thus �X 6↪→L

∨
A1,n. A contradiction.

Since R(�X, ? {A1, . . . , An}), we have �X 6↪→L Ai for 1 ≤ i ≤ n. Thus for
each Ai, where 1 ≤ i ≤ n, there exists a state σi of an L-model M such that
σi # �X and σi 6# Ai. Recall that states are, by definition, non-empty sets.
Suppose that Ai is a p-wff. Hence for any w ∈ σi we have M, w |= X and, at the
same time, M, w 6|= Ai. Thus X 6|=L Ai for 1 ≤ i ≤ n. Now suppose that Ai is
a n-wff. Since σi 6# Ai, we get σi # ¬Ai, where ¬Ai is a p-wff. Hence for some
w ∈ σi we have M, w 6|= Ai and thus X 6|=L Ai.

Therefore E(X, ? {A1, . . . , An}).
�

Thus, generally speaking, evocation is just giving rise by premises supposed
to be known. This explains why Corollary 24 holds.

6. Final remarks

Since Ex Falso Quodlibet holds in Classical Logic, in order to model the phenom-
enon of the arising of questions from inconsistencies we have to use some non-
classical tools. The concept of permittance analysed in this paper is useful in this
respect, although the solution offered is not fully general. An advantage of the
solution lies in staying closer to the standard logical format than the alternative
solutions proposed within the adaptive logic programme (see [5], [6]).

Besides its applicability in the area of questions, the concept of permittance
seems interesting on its own. As we pointed out in Section 2.3, one can express the
fact that A is known in a state directly in a non-modal language. The relativiza-
tion to states, in turn, seems to resolve the old philosophical problem: one can
legitimately claim that A is an item of knowledge in some initial state and ceases
to constitute knowledge as the initial state is enriched with a new possible world/
a new account of how things are in which A is not true anymore.16 Moreover,
let us consider the case of conflicting hypotheses being general statements of the
form ∀xiA. Assuming that they are treated semantically as we have treated p-wffs,
conflicting hypotheses can be simultaneously permitted by a state and this is not
tantamount to falling into a contradiction. A hypothesis of this kind constitutes an
item of knowledge in a state if it is true in each world of the state, and extending
the state with a new world in which the claim of the hypothesis does not hold only
changes its epistemic status, but does not require the rejection of the hypothesis:

16More precisely, A ceases to constitute knowledge with respect to the “new” state.
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it remains an item of knowledge in the “old” state and becomes (only) permitted
in the “new” state. Permitted counterparts of n-wffs, in turn, perform the role of
state-constraints, since in their case permittance by a state equals being true in
each world of the state.

Last but not least: ↪→L seems to be an interesting truth-preserving para-
consistent consequence relation and the logic determined by it is worth further
study.
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