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Abstract

Two concepts of single- and multiple-conclusion entailment, based on the
idea of minimality, are introduced and studied. The analysis is performed at
the propositional level. As for consistent sets of premises, ranges of the entail-
ments defined, dubbed “strong”, equal ranges of their classical counterparts.
Yet, strong entailments are non-Tarskian. In particular, they are not mono-
tone, but, at the same time, have some intuitively plausible properties which
their standard counterparts lack. A proof-theoretic account of minimally in-
consistent sets and thus, indirectly, of strong entailments is provided. Some
applications of the introduced concepts, pertaining to belief revision and argu-
ment analysis, are discussed.

Keywords: entailment, multiple-conclusion entailment, non-monotonic logic, mini-
mally inconsistent sets, contraction, argument analysis

1 Introduction
1.1 Single-Conclusion Entailment
The idea of transmission of truth underlies the intuitive concept of entailment. Ac-
cording to the idea, entailment is akin to an input-output device which, when fed
with truth at the input, gives truth at the output. The input need not consist of
truths, but if it does, it transforms into a true output. Similarly, if the premises
are all true, any conclusion entailed by them must be true, although the truth of

I am very grateful to the anonymous referees of this paper, whose remarks enabled me to improve
the initial version, in particular by shortening some proofs.
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premises is not a necessary condition for entailment to hold. Or, to put it di�erently,
the hypothetical truth of premises warrants the truth of an entailed conclusion.1

Logicians operate with well-formed formulas (w�s for short) of formalized lan-
guages and conceptualize entailment as a semantic relation between sets of w�s and
single w�s. At the same time they tend to understand the “if” above in the sense of
material conditional. Yet, since a material conditional with false antecedent is true
irrespective of the logical value of the consequent, as a consequence one gets:

(I) a set of w�s which cannot be simultaneously true, i.e. an inconsistent set,
entails every w�.

Moreover, a material conditional with true consequent is true irrespective of the
logical value of the antecedent, and hence:

(II) a logically valid w� is entailed by any set of w�s.

Both (I) and (II) are a kind of by-products and we got accustomed to live with them.
But (I) as well as (II) seem to contravene the intuitive idea of transmission of truth.
To say that “truth is transmitted” seems to presuppose that it can occur at the
input and that it need not occur at the output.

Another drawback of the received view is this. To say that the hypothetical
truth of sentences in a set X warrants the truth of a sentence B seems to presuppose
that the hypothetical truth of all the sentences in X contributes to the hypothetical
truth of B. Entailment intuitively construed is a kind of semantic entrenchment of an
entailed sentence in a set of sentences that entails it: a set of sentences X that entails
a sentence B comprises neither less nor more sentences than those the hypothetical
truth of which, jointly, warrants the truth of B. On the other hand, entailment
defined in the usual way, by using, inter alia, the material “if”, is monotone:

(M) a w� B entailed by a set of w�s X is entailed by any superset of X as well

and hence the w� B is also entailed by sets of w�s which contain elements that are
irrelevant with regard to the transmission of truth and/or the semantic entrenchment
e�ect(s): their hypothetical truth do not contribute in any way to the truth of B.

1.2 Multiple-Conclusion Entailment
The concept of entailment is sometimes generalized to the concept of multiple-
conclusion entailment (mc-entailment for short). Mc-entailment is a semantic rela-
tion between sets of w�s, where an entailed set is allowed to contain more than one

1The latter statement can be explicated as: “If the truth-conditions of all the premises are met,
an entailed conclusion is true as well.”
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element. The underlying idea is: an mc-entailed set must contain at least one true
w� if the respective mc-entailing set consists of truths. Or, to put it di�erently, the
hypothetical truth of all the w�s in an mc-entailing set warrants the existence of a
true w� in the mc-entailed set.2

Mc-entailment can hold for trivial reasons: X mc-entails Y because X single-
conclusion entails (sc-entails for short) at least one w� in Y . But mc-entailment
can also hold non-trivially: it happens that a set of w�s, X, mc-entails a set of
w�s, Y , although X does not sc-entail any w� in Y . For instance (taking Classical
Propositional Logic as the basis), the truth of all the w�s in the set X = {p æ q‚r, p}
warrants the existence of a true w� in the set Y = {q, r}, but neither q nor r is
sc-entailed by X or, to put it di�erently, the hypothetical truth of the w�s in X

guarantees that at least one of: q, r, is true, but warrants neither the truth of q nor
the truth of r.

The concept of mc-entailment is more general than that of sc-entailment. One
can always define sc-entailment as mc-entailment of a singleton set. However, it is
not the case that mc-entailment can always be defined in terms of sc-entailment.3

One of the ways of thinking of entailed non-singleton sets is to construe them as
items e�ectively delimiting search spaces: a set of w�s Y entailed by a set of w�s X

is a minimal set that comprises w�s among which a truth must lie if the w�s in X are
all true. “Minimal” means here “no proper subset of Y behaves analogously w.r.t.
X.” Another way of thinking about an entailed set is to construe it as characterizing
the relevant cases to be considered, for if X mc-entails Y and each w� in Y sc-entails
a w� B, the w� B is sc-entailed by X as well. However, the standard concept of
mc-entailment is too broad to reflect the above ideas. This is due to the fact that
mc-entailment is right-monotone.

(RM) if a set of w�s X mc-entails a set of w�s, Y , then X mc-entails any
superset of Y as well.

Observe also that mc-entailment explicated by means of the material “if” su�ers
2It is sometimes claimed that the concept of mc-entailment originates from [5] due to his intro-

duction of sequents with sequences of w�s in the succedents. The semantic concept of mc-entailment
was explicitly introduced in [4] under the heading “involution.” Its syntactic counterpart, mc-
consequence, was incorporated into the general theory of logical calculi by [19]. The first monograph
devoted to mc-consequence and related concepts (multiple-conclusion calculus, multiple-conclusion
rules, etc.) was [20].

3Philosophers tend to think that mc-entailment between sets X and Y is nothing more than
sc-entailment of a disjunction of all the formulas in Y from a conjunction of all the formulas in X.
However, this is not always so; whether this is right depends both on the richness of syntax (the
presence/lack of infinite disjunctions and conjunctions) and semantics (the classical/nonclassical
meanings of disjunction and conjunction). For details and counterexamples see [21].
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similar drawbacks to those of sc-entailment explicated in this way:

(I’) any set of w�s is mc-entailed by an inconsistent set of w�s, and

(II’) a set of w�s that contains a logically valid w� is mc-entailed by any set of
w�s.

Moreover, mc-entailment is left-monotone, that is:

(LM) a set of w�s Y which is mc-entailed by a set of w�s X is also mc-entailed by
any superset of X.

Hence there exist mc-entailing sets of w�s which contain, inter alia, w�s that are
semantically irrelevant to the corresponding mc-entailed sets. For example, {s, p æ
q ‚ r, p} mc-entails {q, r}, while the hypothetical truth of s is completely irrelevant
to the occurrence of truth in {q, r}.

1.3 Aims
In this paper we introduce and examine a concept of multiple-conclusion entail-
ment, which we dub “strong multiple-conclusion entailment.” Formally, strong mc-
entailment is a subrelation of mc-entailment. We define strong mc-entailment in a
way which allows us to avoid the drawbacks (I’) and (II’) indicated above. Moreover,
strong mc-entailment is neither left-monotone nor right-monotone. As a by-product
one gets a concept of single-conclusion entailment which, in turn, is free of the
drawbacks pointed out at the beginning of this paper. We coin the concept “strong
single-conclusion entailment.” This concept of sc-entailment is analysed in the paper
as well.

For simplicity, the analysis is pursued at the propositional level.
The paper is organized as follows.
Section 2 introduces the logical apparatus needed.
Section 3 is devoted to strong mc-entailment. Its definition is proposed and the

adequacy issue is addressed therein. The consecutive subsections include theorems
and corollaries characterizing basic properties of strong mc-entailment. In particular,
it is shown that strong mc-entailment between non-empty sets of w�s involves only
such sets which comprise contingent (i.e. neither valid nor inconsistent) w�s. It
occurs that, as long as the underlying logic has the compactness property, strong mc-
entailment holds only between finite sets of w�s. Strong mc-entailment exhibits the
variable-sharing property. The relation between strong mc-entailment and minimally
inconsistent sets is examined. A deduction theorem for strong mc-entailment is
provided.
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An analysis of strong sc-entailment is presented in Section 4. We define it as
strong mc-entailment of a singleton set. Basic properties of strong sc-entailment are
analysed. It is shown that the relation between strong mc- and sc-entailments does
not fit the “a conjunction yields a disjunction” pattern.

In Section 5 we compare strong sc- and mc-entailment with their classical coun-
terparts. We show that classical sc-entailment from a consistent set of w�s boils
down to strong sc-entailment from a finite subset of the set: any w� classically sc-
entailed by a consistent set of w�s is also strongly sc-entailed by a finite subset of
the set. An analogous result for strong mc-entailment is proven as well. Section
5 includes also some comparative remarks on strong entailments and accounts of
entailment proposed in relevance logics and connective logics.

Section 6 provides a proof-theoretic account of minimally inconsistent sets and
thus, indirectly, of strong mc- and sc-entailments. Proofs of soundness and com-
pleteness of the proposed calculus are given in the Appendix.

Section 7 is devoted to some conceptual applications of the results presented in
the previous sections.

Section 8 discusses the issue of transferability of the results concerning the clas-
sical propositional case to the first-order level and, very briefly, to the case of non-
classical logics.

Some, but not all, of the results presented in this paper were already made
available in the research report [28].

2 The Logical Basis

We remain at the propositional level, and we consider the case of Classical Propo-
sitional Logic (hereafter: CPL). We assume that CPL is expressed in a language
characterized as follows.

The vocabulary of the language comprises a countably infinite set Var of propo-
sitional variables, the connectives: ¬, ‚, ·, æ, and brackets. The set Form of well-
formed formulas (w�s) of the language is the smallest set that includes Var and sat-
isfies the following conditions: (1) if A œ Form, then ‘¬A

Õ œ Form; (2) if A, B œ Form,
then ‘(A ¢ B)‘ œ Form, where ¢ is any of the connectives: ‚, ·, æ. We adopt the
usual conventions concerning omitting brackets. We use A, B, C, D, with subscripts
when needed, as metalanguage variables for w�s, and X, Y, W, Z, with or without
subscripts or superscripts, as metalanguage variables for sets of w�s. The letters
p, q, r, s, t are exemplary elements of Var.

By a proper superset of a set of w�s X we mean a set of w�s Z such that X

is a proper subset of Z. For the sake of brevity, we adopt the following notational
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conventions:

• we write X, Y instead of X fi Y ,

• X, A abbreviates X fi {A},

• X�A

abbreviates X \ {A}.

These conventions will be applied as long as there is no risk of a misunderstanding.
The inscriptions

w

X and
x

Y refer to a conjunction of all the w�s in a non-
empty and finite set of w�s X and to a disjunction of all the w�s in X, respectively.
If X is a singleton set, {A}, then

w

X =
x

X = A.
Let 1 stand for truth and 0 for falsity. A CPL-valuation is a function v : Form |æ

{1, 0} satisfying the following conditions: (a) v(¬A) = 1 i� v(A) = 0; (b) v(A‚B) =
1 i� v(A) = 1 or v(B) = 1; (c) v(A · B) = 1 i� v(A) = 1 and v(B) = 1; (d)
v(A æ B) = 1 i� v(A) = 0 or v(B) = 1. Remark that the domain of v includes
Var.

For brevity, in what follows we will be omitting references to CPL. Unless oth-
erwise stated, the semantic relations analysed are supposed to hold between sets
of CPL-w�s, or sets of CPL-w�s and single CPL-w�s. By valuations we will mean
CPL-valuations.

We define:

Definition 1 (Sc-entailment). X |= A i� for each valuation v:

• if v(B) = 1 for every B œ X, then v(A) = 1.

W�s A and B are logically equivalent i� A |= B and B |= A. Sets of w�s, X and
Y , are logically equivalent i� they have exactly the same models, where a model of
a set of w�s is a valuation which makes true all the w�s in the set.

Definition 2 (Mc-entailment). X Î= Y i� for each valuation v:

• if v(B) = 1 for every B œ X, then v(A) = 1 for at least one A œ Y .

Definition 3 (Consistency, inconsistency, validity, and contingence). A set of w�s X

is consistent i� there exists a valuation v such that for each A œ X, v(A) = 1;
otherwise X is inconsistent. A w� B is:

1. consistent i� the singleton set {B} is consistent,

2. inconsistent i� the singleton set {B} is inconsistent,
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3. valid i� for each valuation v, v(B) = 1,

4. contingent i� B is neither inconsistent nor valid.

Remark 1. Consistent w�s construed in the above manner are often called satisfi-
able w�s. The category of contingent w�s comprises w�s which are satisfiable, but
not valid.

3 Strong Multiple-Conclusion Entailment
3.1 Definition and the Adequacy Issue
We use Îª as the symbol for strong mc-entailment, and we define the relation as
follows:4

Definition 4 (Strong mc-entailment). X Îª Y i�

1. X Î= Y , and

2. for each A œ X : X°A

Î=/ Y , and

3. for each B œ Y : X Î=/ Y°B

.

The consecutive clauses of the above definition express the following intuitions: the
hypothetical truth of all the w�s in X warrants the existence of at least one true w�
in Y , yet the warranty disappears as X decreases or Y decreases. In other words,
X and Y are minimal sets under the warranty provided by the clause 1.

Here are simple examples:

{p} Îª {p} (1)

{p, p æ q} Îª {q} (2)

{p ‚ q, ¬p} Îª {q} (3)

ÿ Îª {p, ¬p} (4)

{p, ¬p} Îª ÿ (5)

ÿ Îª {p ‚ ¬p} (6)

{¬p, ¬q, p ‚ q} Îª ÿ (7)

ÿ Îª {p, q, ¬(p ‚ q)} (8)
4Recall that X�A

abbreviates X \ {A}, and similarly for Y .
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{p ‚ q} Îª {p, q} (9)
{p ‚ q} Îª {p · q, p · ¬q, ¬p · q} (10)

{p · q æ r, ¬r} Îª {¬p, ¬q} (11)
{p · (q ‚ r)} Îª {p · q, p · r} (12)
{p ‚ (q ‚ r)} Îª {p ‚ q, p ‚ r} (13)

{¬(p · (q · r))} Îª {¬p ‚ ¬q, ¬p ‚ ¬r} (14)
{p ‚ (q ‚ r)} Îª {(p ‚ q) · (p ‚ r), q ‚ r} (15)

Note that ÿ Îª/ ÿ, as ÿ Î=/ ÿ.
Since the empty set has no proper subsets, and each proper subset of a non-

empty set is included in a maximal proper subset of the set, it is clear that the
following is true:
Corollary 1. X Îª Y i� X Î= Y and the following conditions hold:

1. there is no proper subset Z of X such that Z Î= Y ,

2. there is no proper subset W of Y such that X Î= W .
Due to the monotonicity of “standard” mc-entailment, Î=, we have:

Corollary 2. If X Îª Y , then:
1. Z Îª/ Y , where Z is either a proper subset or a proper superset of X,

2. X Îª/ W , where W is either a proper subset or a proper superset of Y .
Thus strong mc-entailment, Îª, is neither left-monotone nor right-monotone.

The examples presented below witness this:

{p, p æ q ‚ r} Îª {q, r} (16)
{p, p æ q ‚ r, ¬q} Îª/ {q, r} (17)

{p, p æ q ‚ r} Îª/ {q, r, q ‚ r} (18)
Observe that the following are true:5

{p, ¬p} Îª/ {q} (19)
{p} Îª/ {p ‚ ¬p} (20)

Thus it is neither the case that any inconsistent set of w�s strongly mc-entails any
set of w�s nor it is the case that a set which contains a valid w� is strongly mc-
entailed by any set of w�s. Hence strong mc-entailment is free of the drawbacks (I’)
and (II’) pointed out in section 1.2.

5As for (19), {q} \ {q} = ÿ, but we have {p, ¬p} Î= ÿ. In the case of (20) we have ÿ Î= {p ‚ ¬p}.
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3.1.1 Strong Mc-entailment, Perfect Validity, and Tennant’s Entail-

ments

Corollary 1 yields that our concept of strong mc-entailment is akin to (but not
identical with ) the concept of perfectly valid sequent introduced in [25], p. 185.

Assume for a moment that sequents are simply pairs of sets of w�s. A proper
subsequent of a sequent X : Y is a sequent resulting from it by removing at least one
w� from X or from Y . Tennant’s definition of validity of a sequent X : Y amounts
to the presence of mc-entailment of Y from X. A sequent X : Y is perfectly valid i�
X : Y is valid and no proper subsequent of X : Y is valid. Thus, by Corollary 1, a
sequent X : Y is perfectly valid i� X Îª Y holds.6

However, perfect validity performs an auxiliary role in [25]. The central concept
is that of sequent being an entailment. A sequent X : Y is an entailment just in
case X : Y has a perfectly valid suprasequent. A sequent Z : W is a suprasequent
of the sequent X : Y i� for some substitution s, s(Z) = X and s(W ) = Y . Tennant
builds a sequent calculus which is sound and complete w.r.t. entailments construed
in the above manner. A proof-theoretic account of perfectly valid sequents is also
given by means of the so-called perfect proofs.

In this paper we will concentrate on a semantic analysis of strong mc-entailment
or, if you prefer, perfect validity. A proof-theoretic account of strong mc-entailment,
di�erent from that o�ered by Tennant for perfect validity, will be also provided.

3.2 Basic Properties of Strong Mc-entailment
Let us first note:

Corollary 3. Let A, B be logically equivalent w�s.

1. If A œ X and X Îª Y , then X�A

fi {B} Îª Y .

2. If A œ Y and X Îª Y , then X Îª Y�A

fi {B}.

Thus logically equivalent w�s are replaceable in the context of strong mc-entailment.
Needless to say, replaceability may fail for logical equivalence of sets of w�s. This

6But if the concept of proper subsequent is to be understood di�erently (i.e. X

Õ : Y

Õ is a proper
subsequent of X : Y just in case X

Õ $ X or Y

Õ $ Y , one needs the condition:

X

Õ fi Y

Õ ™ X fi Y

in order to pass from perfect validity to strong mc-entailment. Tennant does not provide an explicit
definition of the notion of proper subsequent used.
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is not surprising, as strong mc-entailment is a “hybrid” notion, defined in terms of
semantic as well as set-theoretic clauses.7

Corollary 4. {A} Îª {A} i� A is contingent.

Proof. Clearly, {A} Î= {A}, and {A}�A

= ÿ. On the other hand, A is not valid i�
ÿ Î=/ {A}, and A is not inconsistent i� {A} Î=/ ÿ.

However, the overlap/reflexivity condition is not satisfied in the case of non-
singleton sets.

Corollary 5. If X has at least two elements, then X Îª/ X.

Proof. Suppose otherwise. It follows that X�A

Î=/ X, where A œ X. But, as X

has at least two elements, it holds that X�A

fl X ”= ÿ and hence X�A

Î= X. A
contradiction.

Let us now prove

Corollary 6. If X Îª Y and X is inconsistent, then Y = ÿ.

Proof. Let X Îª Y . Thus X Î= Y . Assume that X is inconsistent. Suppose that
Y ”= ÿ. Thus ÿ is a proper subset of Y . However, X Î= ÿ (since X is inconsistent)
and hence X Îª/ Y due to Corollary 1. So Y = ÿ.

Thus an inconsistent set strongly mc-entails, if any, only the empty set. If any,
since there are inconsistent sets that do not strongly mc-entail even the empty set.
For instance, the set {p · ¬p, p} does not strongly entail the empty set because we
still have {p · ¬p} Î= ÿ. As we will see, only minimally inconsistent sets strongly
mc-entail the empty set.

Remark 2. There exist strongly mc-entailed inconsistent sets of w�s. Examples
(4) and (8) presented above support this claim. Here are examples which do not
involve the empty set:

{p} Îª {p · q, p · ¬q} (21)

{¬(p · q), p ‚ q} Îª {p · ¬q, ¬p · q} (22)

7Such a solution has obvious vices, but also some virtues; see sections 4.2.3 and 5.1 below.

2480



Entailment, Transmission of Truth, and Minimality

3.2.1 Contingent, Valid, and Inconsistent W�s

Interestingly enough, strong mc-entailment between non-empty sets of w�s involves
sets which comprise contingent w�s only. The following holds:

Theorem 1 (Contingency). Let X Îª Y . If X ”= ÿ and Y ”= ÿ, then each w� in
X fi Y is contingent.

Proof. Assume that X Îª Y , where X and Y are non-empty sets.
Suppose that X contains a valid w�, say, A. It follows that X�A

Î= Y and
therefore X Îª/ Y . Now suppose that X contains an inconsistent w�. Hence X is
an inconsistent set. But Y ”= ÿ. Thus, by Corollary 6, X Îª/ Y , which contradicts
the assumption.

Therefore X contains contingent w�s only.
Suppose that a valid w�, say, A, belongs to Y . By assumption, X ”= ÿ, so ÿ is a

proper subset of X. Suppose that Y = {A}. Clearly, ÿ Î= {A} due to the validity
of A. Hence X Îª/ {A}. Now suppose that Y ”= {A}. As Y ”= ÿ, it follows that {A}
is a proper subset of Y which, however, is mc-entailed by X since A is valid. Thus
X Îª/ Y . Therefore no valid w� belongs to Y .

Finally, suppose that an inconsistent w�, B, belongs to Y . In this case X Î= Y

yields X Î= Y�B

. As Y is, by assumption, non-empty, Y�B

is a proper subset of
Y . It follows that X Îª/ Y . We arrive at a contradiction. Thus no w� in Y is
inconsistent.

Therefore X fi Y contains contingent w�s only.

What if either X or Y is empty? The answer is provided by:

Corollary 7.

1. If ÿ Îª Y , then either Y is a singleton set containing a valid w�, or Y is a
non-singleton set comprising only contingent w�s.

2. If X Îª ÿ, then either X is a singleton set containing an inconsistent w�, or
X is a non-singleton set comprising only contingent w�s.

Proof. If ÿ Îª Y , then Y ”= ÿ. Assume that Y is a singleton set, {C}. Since
ÿ Îª {C} presupposes ÿ Î= {C}, it follows that C is a valid w�. Assume that Y is
a non-singleton set. Suppose that Y contains a non-contingent w�, say, B. If B is
valid, then ÿ Î= {B} and hence ÿ Îª/ Y . The situation is analogous when B is an
inconsistent w�; in this case we would have ÿ Î= Y�B

.
If X Îª ÿ, then X ”= ÿ. Assume that X is a singleton set, {C}. Thus {C} Î= ÿ

and hence C is an inconsistent w�. Assume that X is a non-singleton set. Suppose
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that X contains a non-contingent w�, say, A. Clearly, X�A

is a proper subset of
X and so is {A}. Assume that A is valid. Thus X�A

Î= ÿ and hence X Îª ÿ does
not hold. Now assume that A is inconsistent. Thus {A} Î= ÿ and hence, again,
X Îª ÿ is not the case. Therefore each w� in X is contingent provided that X is a
non-singleton set.

As for strong mc-entailment, non-contingent w�s come into play in two excep-
tional situations only.

Theorem 2. Let X Îª Y .

1. If C is valid, then: C œ X fi Y i� X = ÿ and Y = {C}.

2. If C is inconsistent, then: C œ X fi Y i� X = {C} and Y = ÿ.

Proof. Let C be a valid w�. Assume that X Îª Y and C œ X fi Y .
Suppose that C œ X. Hence X ”= ÿ and X�C

is a proper subset of X. If C is
valid, then whatever is mc-entailed by X is also mc-entailed by X�C

. So X Îª/ Y .
We arrive at a contradiction. Therefore C /œ X and thus C œ Y .

Suppose that X ”= ÿ. Thus ÿ is a proper subset of X. Since C is valid and C œ Y ,
we have ÿ Î= Y . It follows that X Îª/ Y , contrary to the assumption. Therefore
X = ÿ. As C œ Y , it follows that Y does not comprise contingent w�s only. Hence
Y = {C} due to Corollary 7.

Needless to say, if Y = {C}, then C œ X fi Y .
The proof of (2 ) goes along similar lines.

According to Theorem 2, valid w�s can occur as elements of strongly mc-entailed
sets, but these sets are always singleton sets which, moreover, are strongly mc-
entailed only by the empty set. Similarly, if an inconsistent w� belongs to a strongly
mc-entailing set, it is the only element of this set and the respective strongly mc-
entailed set is empty. Moreover, valid w�s never occur in strongly mc-entailing sets,
and inconsistent w�s never occur in strongly mc-entailed sets.

3.2.2 Strict Finiteness and Variable Sharing

We are dealing here with CPL, in which mc-entailment has the following properties:

(lf) If X Î= Y , then X1 Î= Y for some finite subset X1 of X.

(rf) If X Î= Y , then X Î= Y1 for some finite subset Y1 of Y.

As for CPL (and other logics in which mc-entailment fulfils the above conditions),
strong mc-entailment is strictly finitistic in the sense explained by:
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Theorem 3 (Strict finiteness). If X Îª Y , then X and Y are finite sets.

Proof. Let X Îª Y .
Suppose that X is an infinite set. By Corollary 1, it follows that there is no

finite subset of X which mc-entails Y . Hence X Î=/ Y due to condition (lf). But
X Îª Y yields X Î= Y . So X is a finite set. Now suppose that Y is an infinite set.
Hence, by Corollary 1, no finite subset of Y is mc-entailed by X. Thus X Î=/ Y due
to condition (rf). It follows that X Îª Y does not hold, contrary to the assumption.
So Y is a finite set as well.

Our next theorem is strongly dependent on the fact that we consider here propo-
sitional formulas.
Notation. By Var(A) we designate the set of all the propositional variables that
occur in a w� A. Var(X) designates the set of all the propositional variables that
occur in the w�s which belong to a set of w�s X.

Theorem 4 (Variable sharing). Let X Îª Y . If X and Y are non-empty sets, then
Var(X) fl Var(Y ) ”= ÿ.

Proof. Let X Îª Y , where X ”= ÿ and Y ”= ÿ.
If X ”= ÿ, then, by Corollary 2, ÿ Î=/ Y . By assumption, Y ”= ÿ. So there exists

a valuation, say, v

ú, such that v

ú(B) = 0 for any B œ Y . By Corollary 6, X is
consistent. Hence there exists a valuation v such that v(A) = 1 for every A œ X.

Suppose that Var(X) fl Var(Y ) = ÿ. Let v

+ be a valuation such that: (a)
v

+(p
i

) = v

ú(p
i

) if p

i

œ Var(Y ), (b) otherwise v

+(p
i

) = v(p
i

). As Var(X)flVar(Y ) =
ÿ, we have v

+(A) = 1 for every A œ X. On the other hand, v

+(B) = 0 for each
B œ Y . Hence X Î=/ Y and therefore X Îª/ Y . We arrive at a contradiction.

So when strong mc-entailment between X and Y holds, the w�s in X share propo-
sitional variable(s) with the w�s in Y . However, Theorem 4 cannot be strengthened
to the e�ect that Var(Y ) ™ Var(X) would be the case. Similarly, Var(X) ™ Var(Y )
does not generally hold.8

3.2.3 Partial Reduction to Minimally Inconsistent Sets

As long as a logic operating with the classical negation is concerned, there exist
simple links between strong mc-entailment and minimally inconsistent sets:9

8For instance, we have {p ‚ q} Îª {p, r æ q} as well as {p · q} Îª {p}.
9The concept of minimally inconsistent set has found natural applications is many areas, from

philosophy of science (cf., e.g., [9]) to theoretical computer science, AI, and logic (see, e.g., [12],
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Definition 5 (Minimally inconsistent set; MI-set). A set of w�s X is minimally
inconsistent i� X is inconsistent, but each proper subset of X is consistent.

For brevity, we will be referring to minimally inconsistent sets as to MI-sets.
Note that ÿ is not a MI-set. Singleton MI-sets have inconsistent w�s as the (only)

elements. Here are examples of non-singleton MI-sets:

{p, ¬p} (23)

{p ‚ q, ¬p, ¬q} (24)

{p æ q, p, ¬q} (25)

{p æ q ‚ r, p, ¬q, ¬r} (26)

{p æ q, q æ r, ¬(p æ r)} (27)

Clearly, the following holds:

Corollary 8. X is a MI-set i� X is inconsistent and for each A œ X, the set X�A

is consistent.

Remark 3. As for CPL, any MI-set is finite. This is due to the fact that the following
compactness claim holds for CPL:

(˙) for each set of w�s Z: the set Z is consistent i� each finite subset of Z is
consistent.

However, there are logics for which the analogues of (˙) do not hold and thus
finiteness is not a property of MI-sets in general.10

Notation. For brevity, we put:

¬Y =
df

{¬A : A œ Y }

In the case of CPL, strong mc-entailment and MI-sets are linked in the following
way:

Theorem 5. X Îª Y i� X fl ¬Y = ÿ and X, ¬Y is a MI-set.

[3], [16]). Minimally inconsistent sets are also called minimal unsatisfiable (sub)sets or unsatisfiable

cores.
10For example, in a logic that validates the Ê-rule, a set of the form {÷xP x} fi {¬P a : a œ T},

where P is a predicate and T is a (countably infinite) set of all closed terms of the language, is an
infinite MI-set.
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Proof. (∆) Let X Îª Y . Suppose that X fl ¬Y ”= ÿ. Let A œ X fl ¬Y . Thus
A = ¬B for some B œ Y . Let Y

ú = Y�B

. From X Îª Y we get X Î= Y

ú
, B.

Therefore X, ¬B Î= Y

ú, that is, X, A Î= Y

ú. But X, A = X, since A œ X. Hence
X mc-entails the proper subset Y

ú of Y . It follows that X Îª/ Y . We arrive at a
contradiction. Therefore X fl ¬Y = ÿ.

If X Îª Y , then X Î= Y and thus the set X, ¬Y is inconsistent. Let us designate
the set X, ¬Y by Z.

If A œ Z, then A œ X or A œ ¬Y .
Assume that A œ X. By the clause 2 of Definition 4, X�A

Î=/ Y and thus the
set X�A

, ¬Y is consistent, that is, Z�A

is consistent.
Now assume that A œ ¬Y . Hence A = ¬B for some B œ Y . By the clause 3 of

Definition 4, X Î=/ Y�B

. Thus the set X, ¬(Y�B

) is consistent. Yet, X, ¬(Y�B

) =
Z�A

. Hence the set Z�A

is consistent.
By Corollary 8, X, ¬Y is thus a MI-set.

(≈) Assume that X fl¬Y = ÿ and X, ¬Y is a MI-set. From the latter it follows that
X Î= Y .

Again, let Z = X, ¬Y .
Suppose that X�A

Î= Y for some A œ X. Then the set X�A

, ¬Y is inconsistent.
Yet, since X fl ¬Y = ÿ, the set X�A

, ¬Y is a proper subset of Z. Thus Z is not a
MI-set. A contradiction.

Now suppose that X Î= Y�B

for some B œ Y . Let us designate Y�B

by Y

ú. As
X Î= Y

ú holds, the set X, ¬Y

ú is inconsistent. But X fl ¬Y = ÿ, so ¬B does not
belong to X. Hence the set X, ¬Y

ú is a proper subset of Z. Thus Z is not a MI-set.
A contradiction again.

Therefore X Îª Y .

Theorem 5 yields:

Corollary 9.

1. X Îª ÿ i� X is a MI-set.

2. ÿ Îª Y i� ¬Y is a MI-set.

Remark 4. As the second part of the proof of Theorem 5 shows, one can get X Îª Y

from the fact that X, ¬Y is a MI-set on the condition that X fl ¬Y = ÿ holds. This
condition is a necessary one. For example, let X = {p ‚ q, ¬p, ¬q} and Y = {p, q}.
Then ¬Y = {¬p, ¬q} and hence X, ¬Y = X. As X is a MI-set, so is X, ¬Y . However,
X Îª/ Y , since {p ‚ q} Î= {p, q}. On the other hand, X fl ¬Y = {¬p, ¬q} ”= ÿ.

There exist MI-sets which do not contain w�s beginning with negation, i.e. w�s
of the form ¬B. Here are simple examples:
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{p æ q, p · ¬q}
{p, p æ q, p æ ¬q}

It may seem that such MI are “useless” in showing that strong mc-entailment holds.
But this is wrong. The corollary below explains why.

Corollary 10. If X, Y is a MI-set and X fl Y = ÿ, then X Îª ¬Y .

Proof. Clearly, if X, Y is a MI-set, then X, ¬(¬Y ) is a MI-set. Suppose that X fl
¬(¬Y ) ”= ÿ. So there exists A œ X such that A = ¬¬B for some B œ Y , and
A œ ¬(¬Y ). As X, Y is a MI-set and X fl Y = ÿ, we have B /œ X and thus the
set X, Y�B

is consistent. Hence X, (¬(¬Y ))�¬¬B

is a consistent set as well. But
X, (¬(¬Y ))�¬¬B

= X, ¬(¬Y ), since A = ¬¬B and A œ X. It follows that X, ¬(¬Y )
is not a MI-set. We arrive at a contradiction. Thus X fl ¬(¬Y ) = ÿ. As X, ¬(¬Y )
is a MI-set, by Theorem 5 we get X Îª ¬Y .

3.2.4 Independence and Deduction

Observe that if X strongly mc-entails Y , then neither X nor Y contains syntactically
distinct w�s which are logically equivalent, i.e. entail each other. The reason is that
a MI-set never includes logically equivalent w�s. We can also prove more:

Theorem 6 (Independence). Let X Îª Y , and let A, B be syntactically distinct w�s.

1. If A, B œ X and Y ”= ÿ, then A ”|= B and A ”|= ¬B.

2. If A, B œ Y , then A ”|= B, and ¬A ”|= B provided that {A, B} ”= Y .

Proof. If X Îª Y , then, by Theorem 5, X, ¬Y is a MI-set and X fl ¬Y = ÿ.
Let A, B œ X. Thus the set X�B

, ¬Y is consistent and, due to the fact that
X, ¬Y is inconsistent, X�B

, ¬Y |= ¬B. But A œ X�B

. Therefore X�B

, ¬Y |= A.
Hence A ”|= B.

As B œ X, we have X |= B. Suppose that A |= ¬B. Since A œ X, it follows
that X |= ¬B. Thus X is an inconsistent set and, as Y ”= ÿ, we get X Îª/ Y .

Let A, B œ Y . It follows that ¬A, ¬B œ ¬Y . By Theorem 5, X, ¬Y is a MI-set
and hence an inconsistent set. Thus X, ¬(Y�A

) |= A. However, the set X, ¬(Y�A

),
as a proper subset of the MI-set in question, is consistent. On the other hand, ‘¬B’
œ ¬(Y�A

). It follows that X, ¬(Y�A

) |= ¬B. Therefore A ”|= B.
Assume that {A, B} ”= Y . Suppose that ¬A |= B. It follows that ÿ |= ¬A æ B

and hence ÿ Î= {A, B}. As {A, B} ”= Y , we get X Îª/ Y .
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Notation. For conciseness, let us introduce the following notational convention:

ÁA æ W Ë =
df

I

{¬A} if W = ÿ,

{A æ B : B œ W} if W ”= ÿ.

One can easily show that the following holds:

Corollary 11. Z, A Î= W i� Z Î= ÁA æ W Ë.

As a consequence we get:

Theorem 7 (Deduction for strong mc-entailment). Let A /œ X. If X, A Îª Y , then
X Îª ÁA æ Y Ë.

Proof. Assume that X, A Îª Y . If X, A Î= Y , then, by Corollary 11, X Î= ÁA æ Y Ë.
Let B œ X. Since, by assumption, A /œ X, it follows that A ”= B. Thus X�B

, A

is a proper subset of X, A. As X, A Îª Y holds, we have X�B

, A Î=/ Y . Hence, by
Corollary 11 again, X�B

Î=/ ÁA æ Y Ë. Let C œ Y . Thus X, A Î=/ Y�C

. Therefore,
by Corollary 11, X Î=/ ÁA æ Y�C

Ë. Hence X Îª ÁA æ Y Ë.

Note that the converse of Theorem 7 is not true. For example, ÿ Îª {p æ q, p æ
¬q} holds, but {p} Îª {q, ¬q} is not the case. However, the following is true:

Corollary 12. If X Îª ÁA æ Y Ë and X ”|= ¬A as well as X Î=/ Y , then X, A Îª Y .

Proof. Suppose that Y = ÿ. Hence X Îª {¬A}. Thus X |= ¬A. But, by assump-
tion, X ”|= ¬A. So Y ”= ÿ.

If X Îª ÁA æ Y Ë, then, by Definition 4 and Corollary 11, X, A Î= Y and
X�B

fi {A} Î=/ Y for any B œ X. By assumption, X Î=/ Y . It follows that for every
C œ X, A we have X, A \ {C}Î=/ Y . Now suppose that X, A Î= Y�D

is the case for
some D œ Y . There are two possibilities: (a) Y�D

= ÿ and (b) Y�D

”= ÿ. Assume
that (a) holds. It follows that the set X, A is inconsistent. But, by assumption,
X ”|= ¬A and hence the set X, A is consistent. So (a) does not hold. It follows that
Y is not a singleton set. Assume that (b) is the case. Therefore, by Corollary 11,
X Î= ÁA æ Y�D

Ë. As ÁA æ Y�D

Ë is a proper subset of ÁA æ Y Ë, it follows that
X Îª/ ÁA æ Y Ë. So we arrive at a contradiction again. Hence X, A Î=/ Y�D

for
every D œ Y . As all the clauses of Definition 4 are fulfilled w.r.t. X, A and Y , we
conclude that X, A Îª Y holds.

As the proof of Corollary 12 shows, the assumption “X ”|= ¬A” is dispensable
when Y is neither a singleton set nor the empty set.
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Corollary 13. Let Y be a finite and at least two-element set of w�s. If X Îª ÁA æ
Y Ë and X Î=/ Y , then X, A Îª Y .

Finally, observe that Îª is not closed under uniform substitution. A simple
example illustrates this. Clearly, {p} Îª {p} is the case. But {p · ¬p} Îª {p · ¬p}
does not hold (cf. Corollary 6). Needless to say, p·¬p results from p by substitution.

4 Strong Single-Conclusion Entailment
4.1 Definition and the Adequacy Issue
Sc-entailment traditionally construed can be identified with mc-entailment of a sin-
gleton set. Similarly, it seems natural to define strong sc-entailment as strong mc-
entailment of a singleton set.

We use |ª as the symbol for strong sc-entailment.

Definition 6 (Strong sc-entailment). X |ª B i� X Îª {B}.

For brevity, we will write A |ª B instead of {A} |ª B.
As an immediate consequence of Definition 6 and Theorem 5 one gets:

Theorem 8. X |ª B i� ‘¬B’ /œ X and X, ¬B is a MI-set.

Note that the transition from right to left requires ‘¬B’ /œ X to hold. For example,
although

{p, p æ ¬q, ¬¬q} fi {¬¬q} (28)

is a MI-set, {p, p æ ¬q, ¬¬q} |ª ¬q does not hold, since ‘¬¬q’œ {p, p æ ¬q, ¬¬q}.
The following is true:

Corollary 14. X |ª B i�

1. X |= B and

2. for each proper subset Z of X: Z ”|= B, and

3. X is consistent.

Proof. Clearly, X |= B holds i� X Î= {B} is the case.
Clause 2 holds due to Corollary 1. On the other hand, clause 2 yields that there

is no A œ X such that X�A

Î= {B}.
Since {B} \ {B} = ÿ, clause 3 of Definition 4 and clause 3 of the above corollary

are equivalent for Y = {B}.
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Strong sc-entailment is not monotone. As a matter of fact, it is “antimonotone”
in a sense explained by:

Corollary 15. If X |ª B and X ™ Y , where Y ”= X, then Y |ª/ B.

Proof. By Definition 6 and Corollary 2.

As we pointed out in section 1.1, the monotonicity of entailment contravenes, in a
sense, the semantic entrenchment idea, since it allows semantically irrelevant w�s to
occur among premises. In the case of strong sc-entailment, however, the di�culty
is solved in a radical way: a strongly sc-entailing set is “minimal” with regard to
the transmission of truth and, since no proper superset of a set X that strongly sc-
entails a w� B strongly sc-entails B as well, adding an “irrelevant” w� to X results
in the lack of strong sc-entailment of B from X enriched in this way.

By the clause 2 of Corollary 14, each proper subset of a strongly sc-entailing set
is consistent. Strong sc- and mc-entailment do not di�er in this respect. As we have
seen, however, there exist strongly mc-entailing sets which are inconsistent (each of
them strongly mc-entails only the empty set, however). According to the clause 3
of Corollary 14, this never happens in the case of strong sc-entailment. Anyway,
strong sc-entailment is free of the drawback (I) pointed out in section 1.1. Let us
add: free, again, in a radical way, since inconsistent sets do not strongly sc-entail
any w�s. As an immediate consequence of Corollary 6 one gets:

Corollary 16. No w� is strongly sc-entailed by an inconsistent set of w�s.

Thus no inconsistent w� belongs to a sc-entailing set, and a singleton set which
comprises an inconsistent w� does not strongly sc-entail any w�. In particular,
neither A · ¬A |ª A nor {A, ¬A} |ª A holds, regardless of what A is. Similarly,
there is no B such that A · ¬A |ª B or {A, ¬A} |ª B.

Observe that the following holds as well:

Corollary 17. There is no set of w�s that strongly sc-entails an inconsistent w�.

Proof. By Definition 6 and Theorem 2.

Thus inconsistencies are outside the realm of strong sc-entailment: no inconsistent
set belongs to the domain of |ª and no inconsistent w� belongs to the range of the
relation. No doubt, a paraconsistent logician will dislike strong sc-entailment.

The case of validities is slightly more complicated. By Theorem 2 we get:

Corollary 18. If X |ª B, then no w� in X is valid.

Corollary 19. If B is valid and X |ª B, then X = ÿ.
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One can prove that valid w�s are exactly these w�s which are strongly sc-entailed
only by the empty set.

Corollary 20. A w� B is valid i� ÿ |ª B and X |ª/ B for any X ”= ÿ.

Proof. Let B be a valid w�. Thus {¬B} is a MI-set, and hence, by Corollary 9,
ÿ |ª B. Thus X |ª/ B for any X ”= ÿ. On the other hand, if ÿ |ª B, then ÿ |= B and
hence B is valid.

As for valid w�s, Corollary 19 yields that the di�erence between strong sc-
entailment and sc-entailment simpliciter lies in the fact that valid w�s are strongly
sc-entailed only by the empty set. Thus, in particular, valid w�s are not strongly
sc-entailed by sets of valid w�s. Moreover, a valid w� is not sc-entailed by any set
of w�s to which a valid w� belongs to.

4.2 Some Properties of Strong Sc-entailment
Since strong sc-entailment is defined in terms of strong mc-entailment, one can easily
derive the following corollaries from the corresponding results presented in sections
3.2.1, 3.2.2, and 3.2.4.

Corollary 21. Let A, B be logically equivalent w�s.

1. If A œ X and X |ª C, then X�A

fi {B} |ª C.

2. If X |ª A, then X |ª B.

Corollary 22 (Contingency for |ª). If X |ª B and X ”= ÿ, then each w� in X fi {B}
is contingent.

Corollary 23 (Strict finiteness of |ª). If X |ª B, then X is a finite set.

Corollary 24 (Variable sharing for |ª). If X |ª B and X ”= ÿ, then Var(X)flVar(B) ”=
ÿ.

Corollary 25 (Independence for |ª). Let X |ª B. If A, C are syntactically distinct
w�s that belong to X, then A ”|= C and A ”|= ¬C.

Corollary 26 (Deduction for strong sc-entailment). Let A /œ X. If X, A |ª B, then
X |ª A æ B.

The converse of Corollary 26 is not true. For instance, ÿ |ª p · ¬p æ q holds,
but p · ¬p |ª q does not hold. Yet, there are cases in which X |ª A æ B yields
X, A |ª B. Corollary 12 implies:
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Corollary 27. If X |ª A æ B, and X ”|= ¬A as well as X ”|= B, then X, A |ª B.

Thus we get:

Corollary 28. Let A /œ X, and X ”|= ¬A as well as X ”|= B. Then X, A |ª B i�
X |ª A æ B.

Proof. By corollaries 26 and 27.

Strong sc-entailment is, in a sense, closed under detachment.

Corollary 29 (Detachment for |ª). If X |ª A æ B and X |ª A, then X |ª B.

Proof. Either X |ª A æ B or X |ª A warrants the consistency of X, and together
they yield that X |= B holds.

Assume that X ”= ÿ. Let C be an arbitrary but fixed element of X. From
X |ª A æ B we get X�C

”|= A æ B. It follows that X�C

”|= B. Thus X |ª B.
Now assume that X = ÿ. In this case B is a valid w�. Therefore ÿ |ª B due to

Corollary 20, that is, X |ª B.

Observe that one can also prove that X |ª A æ B and X |= A yield X |ª B.

4.2.1 Strong Sc-entailment from Singleton Sets

Strong sc-entailment from single w�s (more precisely, from singleton sets of w�s)
has some properties which strong sc-entailment from non-singleton sets lack.

Corollary 30. The following are equivalent:

1. A |ª B,

2. A |= B and A, B are contingent w�s.

Proof. The implication from (1 ) to (2 ) is due to Definition 6 and Corollary 22.
As for the passage from (2 ) to (1 ), it su�ces to observe that the contingency of
A warrants the consistency of {A}, while the contingency of B guarantees that
ÿ Î= {B} does not hold.

One cannot generalize Corollary 30 to non-singleton sets. The contingency of
all the w�s belonging to a (non-empty) non-singleton set of w�s X warrants neither
the consistency of X itself nor the lack of entailment of B from proper subset(s) of
X.

Coming back to sc-entailment from single w�s. The lack of strong sc-entailment
in the presence of standard sc-entailment tells us more about the w�s involved than
Corollary 30 does.
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Corollary 31. If A |= B, but A |ª/ B, then A is inconsistent or B is valid.

Proof. If A |= B and A |ª/ B, then {A} is an inconsistent set or ÿ |= B. So A is
inconsistent or B is valid.

When X is a non-empty set having more that one element, the lack of X |ª B

in the presence of X |= B implies that X is inconsistent or B is entailed by some
proper subset of X.

Finally, let us notice the following:

Corollary 32. If A |ª B and B |ª C, then A |ª C.

Proof. Certainly, A |= B and B |= C yields A |= C. By Corollary 30, A |ª B

warrants the contingency of A, while B |ª C yields the contingency of C. So A |ª C

due to Corollary 30.

Observe that when X has more than one element, the passage from X |ª B and
B |ª C to X |ª C requires an additional condition to be met, namely it must be
ensured that for each D œ X, the set X�D

does not entail C.

4.2.2 Mutuality

As for CPL, mc-entailment of a non-empty finite set reduces to sc-entailment of a
disjunction of all the elements of the set, i.e. if Y is a finite set and Y ”= ÿ, then
X Î= Y i� X |=

x

Y . But strong mc-entailment and strong sc-entailment are not
linked in this way. For instance, we have:

p |ª p ‚ q (29)

but we do not have:11

p Îª {p, q} (30)

Strong mc- and sc-entailments are mutually linked in a quite di�erent way, as
the following theorem shows.

Theorem 9 (Mutuality).

1. If X Îª Y, B, where B /œ Y , then X, ¬Y |ª B.

2. If X, ¬Y |ª B and X fl ¬Y = ÿ, then X Îª Y, B.

11(30) does not hold because {p} Î= ({p, q} \ {q}).
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Proof. If X Îª Y, B, then, by Theorem 5, X fi (¬Y fi {¬B}) is a MI-set and X fl
(¬Y fi {¬B}) = ÿ. It follows that (X fi ¬Y ) fi {¬B} is a MI-set and ‘¬B’ /œ X. By
assumption, B /œ Y . So ‘¬B’ /œ ¬Y . Hence ‘¬B’ /œ X, ¬Y . Thus X, ¬Y |ª B by
Theorem 8.

If X, ¬Y |ª B, then, by Theorem 8, (X fi ¬Y ) fi {¬B} is a MI-set and ‘¬B’
/œ X fi ¬Y . Suppose that X fl (¬Y fi {¬B}) ”= ÿ. As ‘¬B’ /œ X fi ¬Y , it follows
that (X fl ¬Y ) ”= ÿ. On the other hand, by assumption (X fl ¬Y ) = ÿ. Therefore
X Îª Y, B due to Theorem 5.

4.2.3 Conjunction vs. Set of Conjuncts

As for the standard sc-entailment based on Classical Logic, there is no scope di�er-
ence between being entailed by a finite set of w�s and being entailed by a conjunction
of all the w�s of this set. Although conjunction, ·, is semantically construed here
in the classical manner (cf. Section 2), it is worth to note that strong sc-entailment
from a conjunction of w�s and strong sc-entailment from a set of all its conjuncts
only overlap, but not coincide. Clearly, the following is true:

Corollary 33. Let X ”= ÿ. If X |ª B, then
w

X |ª B.

For example, {p, q} |ª p · q is the case and thus p · q |ª p · q holds as well. Yet, the
converse of Corollary 33 is not true. For instance, p · q |ª p holds, while {p, q} |ª p

does not hold.12 At first sight this looks untenable. However, the phenomenon can
be explained as follows. Information carried by

w

X |ª B and X |ª B di�er when
X is not a singleton set. In both cases transmission of truth as well as consistency
of the set X are ensured. The claim of

w

X |ª B is: although B need not be true,
the (hypothetical) truth of all the w�s in X is su�cient for B be true. Note that
w

X |ª B does not exclude that the transmission of truth e�ect takes place w.r.t.
some proper subset or some proper superset of X. (As for p·q |ª p, there is a proper
subset of {p, q}, namely {p}, which ensures the transmission.) The claim of X |ª B

is stronger: this is just the (hypothetical) truth of all the w�s in X that warrants
the (hypothetical) truth of B. “Just” means here: “one needs neither more nor less
than the truth of all the w�s in X for B be true.”

Observe that one can pass from
w

X |ª B to X |ª B on the condition:

(¸) for each A œ X :
w

(X�A

) ”|= B

which, however, does not hold universally.

12By the way, these examples provide a nice illustration of the lack of transitivity of strong
sc-entailment.

2493



Wiúniewski

Remark 5. Although strong sc-entailment is “antimonotone” (cf. Corollary 15),
the following fact is worth some attention:

Corollary 34. Let X ”= ÿ. If X |ª B and Y is a consistent proper superset of X,
then

w

Y |ª B.

Proof. By Corollary 19, if X ”= ÿ and X |ª B, then B is not valid. So ÿ ”|=B. On the
other hand, ÿ is the only proper subset of {

w

Y }. Clearly, if X |= B, then Y |= B

and hence {
w

Y } |= B. If Y is consistent, so is {
w

Y }. Therefore
w

Y |ª B.

Thus a w� strongly sc-entailed by a non-empty set of w�s X is also strongly sc-
entailed by (the singleton set comprising) a conjunction of all the w�s of a consistent
extension Y of X. Note, however, that, according to what has been said above,
w

Y |ª B carries less information than X |ª B. Moreover, X |ª B suppresses Y |ª B.

5 Some Comparisons
5.1 Strong vs. Classical
The basic properties of strong entailments di�er from those of their classical coun-
terparts. However, one can show that whatever is reachable by classical entailments
from consistent sets of premises, is also attainable by strong entailments from some
finite subsets of these sets. To put it briefly: no classical consequence of a consistent
set is lost.

Notice that it holds that (we present a proof of this well-known fact only to keep
this paper self-contained):

Lemma 1. Each inconsistent set of w�s has a subset being a MI-set.

Proof. Let X be an inconsistent set of w�s. By compactness of CPL, X has an
inconsistent finite subset, say, X

Õ. Clearly, X

Õ ”= ÿ. Consider the family of all
inconsistent subsets of X

Õ. Let us designate it by �. Since X

Õ is inconsistent,
� ”= ÿ. As X

Õ is non-empty and finite, there is a natural number, say, k, where
k > 1, such that no set in � has less than k elements. Let Y be an element of
� which comprises exactly k w�s. Obviously, no proper subset of Y belongs to
�. Therefore each proper subset of Y is consistent. It follows that Y is a MI-set
included in X.

Let us now prove:

Theorem 10 (Simulation of Î=). If X Î= Y and X is consistent, then there exist
a finite subset X1 of X and a finite non-empty subset Y1 of Y such that X1 Îª Y1.
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Proof. If X Î= Y , then the set X, ¬Y is inconsistent and thus, by Lemma 1, has sub-
set(s) being MI-sets. Let Z be a MI-set such that Z ™ X, ¬Y . Since, by assumption,
X is consistent, Z * X. We put:

X1 =
df

X fl Z

W =
df

Z \ X1

Clearly, W ™ ¬Y . Moreover, W ”= ÿ, and Z = X1, W as well as X1 fl W = ÿ.
Consider the set Y1 defined by:

Y1 =
df

{C : ¬C œ W}.

We have W = ¬Y1 and hence Z = X1, ¬Y1. It follows that Y1 ™ Y and X1fl¬Y1 = ÿ.
Since Z is a MI-set and Z = X1, ¬Y1 as well as X1 fl ¬Y1 = ÿ, by Theorem 5 we
conclude that X1 Îª Y1 holds. As each MI-set is finite, X1 and Y1 are finite subsets
of X and Y , respectively. Finally, Y1 ”= ÿ since W ”= ÿ.

As a consequence of Definition 6 and Theorem 10 we get:

Theorem 11 (Simulation of |=). If X |= B and X is consistent, then there exists
a finite subset Z of X such that Z |ª B.

Proof. Recall that X |= B i� X Î= {B}, and Z |ª B i� Z Îª {B}. Since we have
already proven Theorem 10, it su�ces to observe that the only non-empty subset of
the singleton set {B} is {B} itself.

The intuitive content of Theorem 11 is this: CPL sc-entailment from a given,
finite or infinite, consistent set of w�s boils down to strong sc-entailment from a
finite subset of the set. Theorem 10 presents an analogous result for mc-entailment.

Remark 6. Let X and Y be di�erent, yet logically equivalent consistent sets of w�s.
The set of w�s classically sc-entailed by X coincides with the set of w�s classically
entailed by Y . However, this need not be the case for strong sc-entailment. Yet,
Theorem 11 yields that the set of w�s attainable by strong sc-entailment from some
finite subset of X equals the set of w�s which are obtainable by strong sc-entailment
from some finite subset of Y , and equals the set comprising all the w�s classically
sc-entailed by X or by Y . Needless to say, the respective subsets of X and of Y may
di�er.
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5.2 Strong vs. Relevant
As it is well-known, when the sum of two consistent sets of CPL-w�s, X and Y ,
is inconsistent, then Var(X) fl Var(Y ) ”= ÿ (cf. e.g. [6], p. 375). It follows that
classical sc-entailment from consistent sets of premises to conclusions which are not
valid w�s exhibits the variable sharing property. It is worth to note that the same
holds true for strong sc-entailment. Theorem 11 together with corollaries 24 and 20
almost immediately yield:

Corollary 35. Let X be a non-empty, consistent set of w�s. If X |= B and B is
not a valid w�, then there exists a finite, non-empty subset Z of X such that Z |ª B

and Var(Z) fl Var(B) ”= ÿ.

Variable sharing is often regarded as an indicator (or even a precondition) of
relevance in the context of semantic consequence. As such, it is usually invoked
in relevant logics. So the question arises: what is the relation between strong sc-
entailment and accounts of entailment proposed in relevant logics? Since there
exist many systems of relevance logic, an exhaustive answer would have required a
separate paper. For the reasons of space, let me restrict to a few remarks only.

As for CPL, valid w�s falling under the schema:

A æ B (31)

license sc-entailment of B from A. For the lack of a better idea, let us call them
classical implicational laws or briefly CIL’s.13

Recall that although all classically valid w�s are strongly sc-entailed by the empty
set, the transition from ÿ |ª A æ B to A |ª B is not always legitimate (cf. Corollary
28). Corollary 30 yields, in turn, that a CIL does not license strong sc-entailment
just in case its antecedent or consequent is not contingent.

The first observation is: there exist CIL’s which are both rejected in some relevant
logics14 and do not license strong sc-entailment. Examples are shown in Table 1.

Second, there exist CIL’s which are rejected in some relevant logic(s), but license
strong sc-entailment. Examples are given in Table 2.

Third, it happens that a CIL which is accepted in a relevant logic does not license
strong sc-entailment. The “mingle” formulas, i.e. w�s of the form A æ (A æ A),
provide simple examples here.

13One should not confuse CIL’s with laws of the implicational fragment of CPL. Both A and
B may involve any connective, implication included. What is important is that implication is the
main connective of (the w� which expresses) a CIL.

14That is, at least one of well-known relevant logics rejects the corresponding law; there is no
space for details. For relevant logics see, e. g., [13] and [18].
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p · ¬p æ q p · ¬p |ª/ q

¬(p æ p) æ q ¬(p æ p) |ª/ q

p æ (q æ q) p |ª/ q æ q

p æ (p æ p) p |ª/ p æ p

p æ p ‚ ¬p p |ª/ p ‚ ¬p

p æ q ‚ ¬q p |ª/ q ‚ ¬q

(p æ p) æ (q æ q) p æ p |ª/ q æ q

(p æ q) æ (p æ p) p æ q |ª/ p æ p

Table 1: Examples of CIL’s rejected in some relevant logics (left column) which do
not license strong sc-entailment (as depicted in the right column).

p æ (q æ p) p |ª (q æ p)
p æ (¬p æ q) p |ª (¬p æ q)

p æ ((p æ q) æ q) p |ª (p æ q) æ q

((p æ q) æ p) æ p (p æ q) æ p |ª p

(p æ (q æ r)) æ (q æ (p æ r)) p æ (q æ r) |ª q æ (p æ r)
p · q æ (p æ q) · (q æ p) p · q |ª (p æ q) · (q æ p)

p · (¬p ‚ q) æ q p · (¬p ‚ q) |ª q

Table 2: Examples of CIL’s rejected in some relevant logics (left column) which,
however, license strong sc-entailment (as depicted in the right column).

5.3 Strong vs. Connexive
Connexive logics are usually characterized as systems validating the following the-
ses:15

¬(¬A æ A) (32)

¬(A æ ¬A) (33)

(A æ B) æ ¬(A æ ¬B) (34)

(A æ ¬B) æ ¬(A æ B) (35)

As strong sc-entailment from the empty set is restricted to classically valid w�s
only (cf. Corollary 20) and some w�s of the forms (32 – 35) are not classically valid,
it is not the case that all the w�s falling under the schemata (32) – (35) are strongly

15For connexive logics see, e.g. [14]. Theses (32) and (33) are attributed to Aristotle, while
theses (34) and (35) are ascribed to Boethius.
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sc-entailed by the empty set.16 It is worth to note, however, that the following are
true:

Corollary 36. For any w� A:

1. ¬A |ª/ A,

2. A |ª/ ¬A.

Proof. Suppose that ¬A |ª A for some w� A. Thus ¬A |= A. On the other hand,
by Theorem 1 it follows that both ¬A and A are contingent w�s. Hence ¬A ”|= A.

We reason analogously in the case of (2 ).

Thus a negation of a w� never strongly sc-entails the w� itself, and a w� never
strongly sc-entails its negation. Corollary 36 seems to express an idea akin to that
which lies behind having (32) and (33) as theses.

Corollary 37. For any w�s A, B:

1. if A |ª B, then A |ª/ ¬B,

2. if A |ª ¬B, then A |ª/ B,

Proof. Assume that A |ª B. It follows that A is a consistent w� and A |= B.
Therefore there exists a valuation v such that v(A) = 1, v(B) = 1 and hence
v(¬B) = 0. Thus A ”|= ¬B. It follows that A |ª/ ¬B.

We reason similarly in the case of (2 ).

A due comment on Corollary 37 is analogous to that on Corollary 36.

6 Towards a Proof-theoretic Account of Strong
Entailments

As Theorem 5 shows, a problem of the form:

(P) Does X strongly mc-entail Y ?

splits into two sub-problems:

(P1) Is it the case that X fl ¬Y = ÿ?
16However, some of them are classically valid and thus are strongly sc-entailed by the empty set.

For instance, we have ÿ |ª ¬(¬(p · ¬p) æ p · ¬p), ÿ |ª ¬((p æ p) æ ¬(p æ p)), or ÿ |ª (p ‚ ¬p æ
p · ¬p) æ ¬(p ‚ ¬p æ ¬(p · ¬p)).
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(P2) Is X, ¬Y a MI-set?

Similarly, due to Theorem 8, a problem of the form:

(P’) Does X strongly sc-entail B?

splits into:

(P’1) Is it the case that ‘¬B’ /œ X?

(P’2) Is X, ¬B a MI-set?

P1 and P’1 are purely syntactic issues. But either P2 or P’2 is a problem that
pertains to a semantic property. In order to solve it syntactically one needs a proof-
theoretic account of MI-sets.

6.1 The Calculus MICPL

In this section we present a calculus, labelled MICPL, in which provable sequents of
a strictly defined form correspond to MI-sets.

Rules of the calculus operate on sequences of sequents of a specific kind. Since
a sequence of sequents is customarily called a hypersequent, MICPL may be called a
calculus of hypersequents. But speaking about hypersequent calculi usually brings
into mind Avron’s seminal works.17 However, the format of MICPL di�ers consider-
ably from that of Avron-style hypersequent calculi. In particular, derivations and
proofs in MICPL are not trees having hypersequents in their nodes, but sequences of
hypersequents. Rules of MICPL transform hypersequents into hypersequents, and a
rule is always applied to the last term of a derivation constructed so far. Last but
not least, MICPL has no axioms, but comprises rules only.

Given these substantial di�erences, and taking into account that the concept
of hypersequent is loaded with references to Avron-style calculi, let me use a new
term for a sequence of sequents. The term chosen is “seqsequent”, after Latin
sequentia, which means (among others) “sequence.”18 No doubt, saying that we aim
at a calculus of seqsequents is less misleading than speaking about a calculus of
hypersequents. A warning is needed, however. As we will see, the order in which

17Starting from the influential paper [1]. Avron-style approach is not the only one, however. A
reader interested in di�erent types of hypersequent calculi (including those in which hypersequents
are construed as sets or multisets of sequents rather than their sequences) is advised to consult [8],
Chapter 4.7.

18“Seq” is not a prefix in English, but since many English words begin with prefixes rooted in
Latin, I hope that this proposal is acceptable, at least for the purposes of this paper. A reader
familiar with programming is kindly requested to suspend any associations he/she may have.
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sequents occur in a “seqsequent” does not determine the order of application of rules
of the calculus. We are speaking about a calculus of seqsequents only to stress that
rules of the calculus operate on “seqsequents”, that is, a rule transforms a sequence
of sequents into a sequence of sequents.

6.1.1 Numerically Annotated W�s, Sequents, and Seqsequents

We will be operating with sequents based on sequences of numerically annotated
w�s. By a numerically annotated w� (na-w� for short) we mean an expression of
the form A

[i], where A is a w� and i is a numeral from the set {1, 2, 3, . . .}. Let us
stress that numerals are here proof-theoretic devices only. It is not assumed that
they refer to possible worlds or perform the function of labels.

By a sequent we will mean an expression of the form:

C

[i1]
1 , . . . , C

[i
m

]
m

„ (36)

where C

[i1]
1 , . . . , C

[i
m

]
m

is a finite sequence of na-w�s; when m = 0, we write the cor-
responding sequent as ÿ „. Although we consider sequents with empty succedents,
it is no accident that we put the turnstile „ into a sequent. This will allow us to dif-
ferentiate between operations on sequents and operations on sequences of annotated
w�s (see below).

An atomic sequent is of the form:

l

[i1]
1 , . . . , l

[i
m

]
m

„ (37)

where l1, . . . , l

m

are literals, that is, propositional variables or their negations. An
atomic sequent (37) is closed if it involves na-w�s based on complementary literals,
i.e. there exist l

[i
j

]
j

, l

[i
k

]
k

(1 6 j, k 6 m) such that l

j

= ¬l

k

. An atomic sequent which
is not closed is called open.

We use the Greek lower-case letters ‡, ◊, ‰, possibly with subscripts, as metalan-
guage variables for finite sequences of na-w�s, the empty sequence included.

Let ‡ „ be a sequent. We define:

w�(‡ „) = {A œ Form : A

[i] is a term of ‡}.

By f\[i
j

](‡) we mean the subsequence of ‡ resulting from it by removing all
its terms (i.e. na-w�s) which are annotated with the numeral i

j

. Needless to say,
f\[i

j

](‡) „ is a sequent.19

19If i

j

is the only numeral which occurs in na-w�s of ‡, then f\[ij ](‡) „ equals ÿ „, which is, by
definition, a sequent. Of course, w�(ÿ „) = ÿ.
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A seqsequent is a finite sequence of sequents. We use the Greek upper-case
letters �, �, �, with subscripts when necessary, as metalinguistic variables for se-
qsequents. By a constituent of a seqsequent we mean any sequent which is a term
of the seqsequent.

Finally, we distinguish ordered sequents.
An ordered sequent is a sequent which falls under the schema:

C

[1]
1 , . . . , C

[m]
m

„ (38)

where m > 1, and C1, . . . , C

m

are pairwise syntactically distinct w�s when m > 1.
Thus, besides sequents of the form A

[1] „, ordered sequents are sequents whose
consecutive terms (with the exception of the turnstile), are pairwise syntactically
distinct w�s annotated with consecutive numerals (occurring in curly brackets),
starting from the numeral 1.20 At the metalanguage level, ordered sequents of the
form (38) will be concisely written as:

C

[≠æm]
≠æ
m

„ (39)

As we will see, in order to show that {C1, . . . , C

m

} is a MI-set it su�ces to
prove the corresponding ordered sequent C

[≠æm]
≠æ
m

„. Moreover, having a disproof of the
ordered sequent is tantamount to showing that the corresponding set of w�s, albeit
inconsistent, is not a MI-set.

6.1.2 Rules and Proofs

In order to present the rules of MICPL in a concise manner let us introduce some
notational conventions first.

Following [22], we distinguish between –-w�s and —-w�s, and we assign two
further w�s to any of them, in the way presented in Table 3.

We use the sign Õ as the concatenation-sign for sequences of na-w�s. For brevity,
we assume that a metalanguage expression of the form ‡

Õ
A

[i] denotes the concatena-
tion of sequence ‡ and the one-term sequence ÈA[i]Í, while a metalanguage expression
of the form ‡

Õ
A

[i] Õ
◊ refers to the concatenation of sequence ‡

Õ
A

[i] and sequence ◊.
The semicolon will perform the role of the concatenation-sign for seqsequents.

We usually omit angle brackets when referring to a seqsequent which has only one
constituent. Thus �; ‡ „ stands for the concatenation of � and È‡ „Í. The
expression � ; ‡ „; � refers to the concatenation of �; ‡ „ and �.

20Each ordered sequent is a sequent, but not the other way round. For instance, the expressions
p

[4]
, q

[2] „ and p

[1]
, p

[3] „ are sequents in our sense, but none of them is an ordered sequent. Similarly,
p

[1]
, p

[1] „ and p

[1]
, p

[2] „ are sequents, though neither of them is an ordered sequent.
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– –1 –2 — —1 —2

A · B A B ¬(A · B) ¬A ¬B

¬(A ‚ B) ¬A ¬B A ‚ B A B

¬(A æ B) A ¬B A æ B ¬A B

Table 3: –-w�s and —-w�s

The calculus MICPL has only rules which operate on seqsequents. No axioms are
provided. Here are the primary rules of MICPL:

R[i]
–

: �; ‡

Õ
–

[i] Õ
◊ „; �

�; ‡

Õ
–

[i]
1

Õ
–

[i]
2

Õ
◊ „; �

R[i]
—

: �; ‡

Õ
—

[i] Õ
◊ „; �

�; ‡

Õ
—

[i]
1

Õ
◊ „; ‡

Õ
—

[i]
2

Õ
◊ „; �

R[i]
¬¬ : �; ‡

Õ ¬¬A

[i] Õ
◊ „; �

�; ‡

Õ
A

[i] Õ
◊ „; �

Any of �, �, ‡, ◊ can be empty.
Observe that rules of MICPL “act locally”: if a rule is applied to a seqsequent,

only one constituent and only one occurrence of a na-w� in the constituent are
acted upon, while the other occurrences and other constituents remain una�ected.
Moreover, any new na-w� that comes into play due to an application of a rule is
annotated with the same numeral as the na-w� acted upon.

We are now ready for an introduction of the concept of proof.

Definition 7 (Proof). A finite sequence of seqsequents �1, . . . , �
n

is a MICPL-proof
of an ordered sequent C

[≠æm]
≠æ
m

„ i�

1. �1 = ÈC [≠æm]
≠æ
m

„Í,

2. �
j+1 results from �

j

by a rule of MICPL, where 1 6 j < n,

3. each constituent of �
n

is a closed atomic sequent,

4. for each k œ {1, . . . , m} there exists a constituent ‡ „ of �
n

such that the
sequent f\[k](‡) „ is an open atomic sequent or is of the form ÿ „.
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An ordered sequent is provable in MICPL i� the sequent has a MICPL-proof.

Remark 7. The concept of proof introduced above is non-standard in many re-
spects. First, a proof is a sequence of seqsequents. Second, notice that it is an
ordered sequent (i.e. a sequent in which w�s occurring left of the turnstile are an-
notated with consecutive numerals, starting from 1) that performs the role of an
“input” of a proof: the first line of a proof is a one-term seqsequent involving an or-
dered sequent. We do not introduce the concept of proof of a sequent in general, but
only of an ordered sequent. As we will see, this is su�cient for our purposes. Third,
proofs in MICPL are strictly linear: �

j+1 results by a rule from �
j

only. Clauses (3)
and (4) of the definition jointly ensure that w�(C [≠æm]

≠æ
m

„) is a MI-set.

Provability in MICPL and the property of being a MI-set are linked in a way
characterized by:

Theorem 12 (Soundness w.r.t. MI-sets). Let X be a finite non-empty set of w�s,
and let ‡ „ be an ordered sequent such that w�(‡ „) = X. If the sequent ‡ „ is
provable in MICPL, then X is a MI-set.

A proof of Theorem 12 is presented in the Appendix.
Due to Theorem 12, in order to show that X is a MI-set it su�ces to prove an

ordered sequent C

[≠æm]
≠æ
m

„ for which the equation X = w�(C [≠æm]
≠æ
m

) holds.

Example 1. {p, ¬p} is a MI-set.

The one-term sequence Èp[1]
, ¬p

[2] „Í is a proof of the sequent p

[1]
, ¬p

[2] „, since
f\[1](p[1]

, ¬p

[2]) „ = ¬p

[2] „ and f\[2](p[1]
, ¬p

[2]) „ = p

[1] „.
For brevity, in what follows we will be omitting angle brackets in the first line

of a proof, and in the case of one-term seqsequents.

Example 2. {p · ¬p} is a MI-set.

Here is a proof of the sequent (p·¬p)[1] „ (inscriptions of the form R[i]
x

do not belong
to proofs, but indicate what rule has been applied to the seqsequent which occurs
on the left):

(p · ¬p)[1] „ R[1]
–

p

[1]
, ¬p

[1] „

Notice that f\[1](p[1]
, ¬p

[1] „) equals ÿ „.

Example 3. {p, ¬(¬p æ q)} is a MI-set.
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The following is a proof of a corresponding ordered sequent:

p

[1]
, ¬(¬p æ q)[2] „ R[2]

–

p

[1]
, ¬p

[2]
, ¬q

[2] „

For the sake of transparency, from now on we highlight the na-w� on which the
rule indicated to the right acts upon. We tick exemplary occurrences of numerals
due to which clause (4) of the definition of proof is satisfied.

Example 4. {¬p, ¬q, p ‚ q} is a MI-set.

Here is a proof of a corresponding ordered sequent:

¬p

[1]
, ¬q

[2]
, (p ‚ q)[3] „ R[3]

—

¬p

[1
Ô

]
, ¬q

[2]
, p

[3
Ô

] „; ¬p

[1]
, ¬q

[2
Ô

]
, q

[3] „

Example 5. {p ‚ (q ‚ r), ¬(p ‚ q), ¬(p ‚ r)} is a MI-set.

p ‚ (q ‚ r))[1]
, ¬(p ‚ q)[2]

, ¬(p ‚ r)[3] „ R[3]
–

(p ‚ (q ‚ r))[1]
, ¬(p ‚ q)[2]

, ¬p

[3]
, ¬r

[3] „ R[2]
–

(p ‚ (q ‚ r))[1]
, ¬p

[2]
, ¬q

[2]
, ¬p

[3]
, ¬r

[3] „ R[1]
—

p

[1]
, ¬p

[2]
, ¬q

[2]
, ¬p

[3]
, ¬r

[3] „; (q ‚ r)[1]
, ¬p

[2]
, ¬q

[2]
, ¬p

[3]
, ¬r

[3] „ R[1]
—

p

[1
Ô

]
, ¬p

[2]
, ¬q

[2]
, ¬p

[3]
, ¬r

[3] „; q

[1]
, ¬p

[2]
, ¬q

[2
Ô

]
, ¬p

[3]
, ¬r

[3] „;
r

[1]
, ¬p

[2]
, ¬q

[2]
, ¬p

[3]
, ¬r

[3
Ô

] „

Example 6. {p æ (q æ r), p æ q, ¬(p æ r)} is a MI-set.

(p æ (q æ r))[1]
, (p æ q)[2]

, ¬(p æ r)[3] „ R[3]
–

(p æ (g æ r))[1]
, (p æ q)[2]

, p

[3]
, ¬r

[3] „ R[2]
—

(p æ (q æ r))[1]
, ¬p

[2]
, p

[3]
, ¬r

[3] „; (p æ (q æ r))[1]
, q

[2]
, p

[3]
, ¬r

[3] „ R[1]
—

¬p

[1]
, ¬p

[2]
, p

[3]
, ¬r

[3] „; (q æ r)[1]
, ¬p

[2]
, p

[3]
, ¬r

[3] „;
(p æ (q æ r))[1]

, q

[2]
, p

[3]
, ¬r

[3] „ R[1]
—

¬p

[1]
, ¬p

[2]
, p

[3]
, ¬r

[3] „; ¬q

[1]
, ¬p

[2]
, p

[3]
, ¬r

[3] „; r

[1]
, ¬p

[2]
, p

[3]
, ¬r

[3] „;
(p æ (q æ r))[1]

, q

[2]
, p

[3]
, ¬r

[3] „ R[1]
—

¬p

[1]
, ¬p

[2]
, p

[3]
, ¬r

[3] „; ¬q

[1]
, ¬p

[2]
, p

[3]
, ¬r

[3] „; r

[1]
, ¬p

[2]
, p

[3]
, ¬r

[3] „;
¬p

[1]
, q

[2]
, p

[3]
, ¬r

[3] „; (q æ r)[1]
, q

[2]
, p

[3]
, ¬r

[3] „ R[1]
—

¬p

[1]
, ¬p

[2]
, p

[3
Ô

]
, ¬r

[3] „; ¬q

[1]
, ¬p

[2
Ô

]
, p

[3]
, ¬r

[3] „; r

[1]
, ¬p

[2]
, p

[3]
, ¬r

[3] „;
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¬p

[1
Ô

]
, q

[2]
, p

[3]
, ¬r

[3] „; ¬q

[1]
, q

[2]
, p

[3]
, ¬r

[3] „; r

[1]
, q

[2]
, p

[3]
, ¬r

[3] „

The system MICPL is complete w.r.t. MI-sets.

Theorem 13 (Completeness w.r.t. MI-sets). If X is a MI-set, then any ordered
sequent ‡ „ such that w�(‡ „) = X is provable in MICPL.

A proof of Theorem 13 is presented in the Appendix.

6.1.3 Disproofs

The system MICPL is useful not only in showing that something is a MI-set, but also
in demonstrating that a set of w�s is inconsistent yet not minimally so. The latter
can be achieved by providing a disproof of an ordered sequent which corresponds to
the set of w�s under consideration.

Definition 8 (Disproof). A finite sequence of seqsequents �1, . . . , �
n

is a MICPL-
disproof of an ordered sequent C

[≠æm]
≠æ
m

„ i�

1. �1 = ÈC [≠æm]
≠æ
m

„Í,

2. �
j+1 results from �

j

by a rule of MICPL, where 1 6 j < n,

3. each constituent of �
n

is a closed atomic sequent,

4. there exists k œ {1, . . . , m} such that for each constituent ‡ „ of �
n

, the
sequent f\[k](‡) „ is closed.

An ordered sequent is disprovable in MICPL i� the sequent has a MICPL-disproof.

Observe that proofs and disproofs di�er only with respect to their closing con-
ditions. To be more precise, each sequence of seqsequents �1, . . . , �

n

satisfying the
clauses 1, 2, and 3 of the definition of proof (i.e. Definition 7) and violating clause
4 of the definition is not a proof, but a disproof.

The following holds (for a proof, see the Appendix):

Theorem 14. If there exists a MICPL-disproof of an ordered sequent C

[≠æm]
≠æ
m

„, then
the set w�(C [≠æm]

≠æ
m

„) is inconsistent, but is not a MI-set.

Here is an example of a disproof of (p æ q)[1]
, p

[2]
, ¬(p ‚ q)[3] „ (clause 4 is

satisfied w.r.t. the numeral 1):
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Example 7. (p æ q)[1]
, p

[2]
, ¬(p ‚ q)[3] „ R[2]

—

¬p

[1]
, p

[2]
, ¬(p ‚ q)[3] „; q

[1]
, p

[2]
, ¬(p ‚ q)[3] „ R[2]

–

¬p

[1]
, p

[2]
, ¬p

[3]
, ¬q

[3] „; q

[1]
, p

[2]
, ¬(p ‚ q)[3] „ R[2]

–

¬p

[1]
, p

[2]
, ¬p

[3]
, ¬q

[3] „; q

[1]
, p

[2]
, ¬p

[3]
, ¬q

[3] „

Thus {p æ q, p, ¬(p ‚ q)}, though inconsistent, is not a MI-set.
Finally, the following holds as well:

Theorem 15. If X is a finite inconsistent set of w�s which is not a MI-set, then
any ordered sequent ‡ „ such that w�(‡ „) = X is disprovable in MICPL.

For a proof of Theorem 15 see the Appendix.

Remark 8. The primary rules of MICPL transform w�s inside sequents analogously
as Smullyan’s tableaux rules do. It is possible to build a calculus of MI-sets in the
“standard” tableau format, with rules defined as operating directly on (annotated)
w�s, while occurrences of these w�s are nodes of respective trees. This would require
adding an annotation mechanism and specifying new closing conditions. The format
of MICPL is akin to that of the so-called erotetic calculi (cf., e.g.,[27], [11],[10]). The
main di�erence lies in the fact that rules of MICPL operate on sequences of sequents,
while rules of erotetic calculi act upon questions based on sequences of sequents.
Moreover, annotations are exploited here in a new manner, and closing conditions
of a proof are more demanding. The advantage of the current format over the
“standard” tableaux approach lies in its relative simplicity at the metatheoretical
level. Moreover, it is known that proofs written in the erotetic calculi format can
be transformed into proofs in tableaux calculi (cf.[10]), sequent calculi (cf. [11]) or
even Hilbert-style calculi (cf. [7]). These e�ects do not disappear when we move
from questions based on sequences of sequents to the “inner” sequences of sequents.

6.2 Soundness and Completeness of MICPL w.r.t. Strong Entail-
ments

As we have shown, the calculus MICPL is sound and complete w.r.t. MI-sets. Due to
Theorem 5, the fact that X, ¬Y is a MI-set guarantees that X Îª Y holds provided
that X fl¬Y = ÿ is the case. So when we restrict ourselves to ordered sequents built
in such a way that the fulfilment of the latter condition is secured, proofs of these
ordered sequents can be viewed as demonstrations that strong mc-entailment hold
in the cases considered.
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Theorem 16 (Soundness w.r.t. strong mc-entailment). Let X = {A1, . . . , A

n

} and
Y = {B1, . . . , B

k

}, where n + k > 0 and A

i

”= ¬B

j

for i = 1, . . . , n and j = 1, . . . , k.
If the ordered sequent:

A

[1]
1 , . . . , A

[n]
n

, ¬B

[n+1]
1 , . . . , ¬B

[n+k]
k

„

is provable in MICPL, then X Îª Y .

Proof. By Theorem 5 and Theorem 12.

Theorem 17 (Completeness w.r.t. strong mc-entailment). Let X = {A1, . . . , A

n

} and
Y = {B1, . . . , B

k

}, where n + k > 0 and A

i

”= ¬B

j

for i = 1, . . . , n and j = 1, . . . , k.
If X Îª Y , then the ordered sequent:

A

[1]
1 , . . . , A

[n]
n

, ¬B

[n+1]
1 , . . . , ¬B

[n+k]
k

„

is provable in MICPL.

Proof. By Theorem 5 and Theorem 13.

As for strong sc-entailment, one gets analogous results by applying Theorem 8
instead of Theorem 5.

7 Some Conceptual Applications
7.1 Deep Contraction
Let us imagine that we are working with a consistent non-empty set of CPL-w�s
X (for instance, representing a database or a belief base) and that a contingent
CPL-w� B has been derived from X. Assume that the derivation mechanism used
preserves CPL-entailment. Now suppose that we have strong, though independent
from X, reasons to believe that ¬B rather than B is the case. As long as we stick to
Classical Logic, extending X with ¬B is not a good move. An option is to switch to
some non-monotonic logic and its consequence operation. As we have shown, strong
sc-entailment is not monotone. But no extension of X produces ¬B as a strongly
sc-entailed consequence of X. This is due to:

Corollary 38. If X |ª B, then there is no proper superset Z of X such that Z |ª¬B.

Proof. Let X |ª B. Suppose that Z |ª ¬B, where X ™ Z and X ”= Z. If X |ª B, then
X |= B and hence Z |= B. If Z |ª ¬B, then Z |= ¬B. Therefore Z is inconsistent
and thus, by Corollary 14, Z |ª/ ¬B.
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A rational move is to contract X first, and in a way that prevents the appearance of
B as a conclusion of any legitimate (i.e. preserving classical entailment) derivation
from the contracted set. How to achieve this? One can examine the derivation
of B from X that has actually been performed, identify the elements of X used
as premises, and then contract X by removing from it at least one w� which was
used as a premise in the performed derivation. This, however, will not do: it is
possible that B is classically entailed by many subsets of X, including some that
do not contain the just removed w�(s), and thus B can still be legitimately derived
from the set contracted in the above manner. Examining all possible legitimate
derivations of B from X constitutes a di�cult if not a hopeless task. However, a
solution is suggested by the content of Theorem 11. By and large, it su�ces to
consider all the finite subsets of X that strongly sc-entail B, and to remove from
X exactly one element of every such subset. A contracted set obtained in this way
does not CPL-entail the w� B and therefore no legitimate derivation leads from the
set to B.

Remark 9. The way of proceeding proposed above is akin to (but not identical
with) the well-known idea of consistency restoring by calculating a minimal hitting
set of the family of all minimally inconsistent subsets of an inconsistent set in order
to eliminate elements of the hitting set from the inconsistent set in question.21

The general idea goes back to [15] and gave rise to some related constructions.22

However, contraction of the analysed kind does not aim at consistency restoring,
but at making a legitimate deduction of B from the resultant set impossible. These
are interconnected, but yet di�erent issues.

In what follows we apply some conceptual tools taken from [29].
Let F be a family of sets, i.e. a set of sets. These sets need not be disjoint. In

the first step we define a related family of pairwise disjoints sets.

Definition 9. F¢ =
df

{X

¢ : X œ F}, where:

X

¢ =
I

X ◊ {X} if X ”= ÿ,

ÿ if X = ÿ.

Since the elements of F¢ are pairwise disjoint, by the Axiom of Choice we get:

21A set X is a hitting set of a family of sets F i� X fl Y ”= ÿ for each Y œ F. A hitting set of F is
minimal if no proper subset of it is a hitting set of F. Hitting sets are also called choice sets. For
hitting/choice sets see, e.g., [24], pp. 335– 338.

22Cf. e.g., [3].
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Corollary 39. If F¢ ”= ÿ and ÿ /œ F¢, then there exists a set “ such that “ comprises
exactly one element, ÈA, XÍ, of each X

¢ œ F¢.

We introduce an auxiliary notion.

Definition 10. “ is a ‰

¢(F)-set i�

1. “ ™
t

F¢ and

2. for each X

¢ œ F¢ such that X

¢ ”= ÿ there exists exactly one ÈA, XÍ œ X

¢

such that ÈA, XÍ œ “.

A ‰

¢(F)-set is a set of ordered pairs. We take into account the first projection of
the set.

Definition 11. Let “ be a ‰

¢(F)-set.

“

1 =
df

{A : ÈA, XÍ œ “}.

Now we are able to introduce the crucial technical notion.

Definition 12. Z is a ‰(F)-set i� Z = “

1 for some ‰

¢(F)-set “.

By and large, a ‰(F)-set is a set comprising exactly one representative, with
regard to the above construction, of each non-empty set belonging to a family of
sets F. The representatives of distinct sets in a ‰-set need not be distinct. One
should not confuse the existence of exactly one representative (of the above kind)
of each set belonging to a family of sets with the existence of a system of distinct
representatives of the family.23 One can prove that a ‰-set always exists, i.e. for
any family of sets F there exists a ‰(F)-set (cf. [29]).

Let us now come back to the contraction issue. The following holds.

Theorem 18 (Deep contraction). Let X be a consistent non-empty set of w�s, and
let B be a non-valid w� such that X |= B. Let F = {W ™ X : W |ª B}, and let Z

be a ‰(F)-set. Then (X \ Z) ”|= B.

Proof. By Theorem 11, the family F is non-empty. If B is non-valid, ÿ /œ F. Thus
X

Õ ”= ÿ for each X

Õ œ F, and hence Z ”= ÿ.
The set X \ Z is consistent, since X is, by assumption, consistent.
Suppose that (X \ Z) |= B. It follows that (X \ Z) ”= ÿ (as B is not valid) and,

by Theorem 11, that Y |ª B for some finite subset Y of X \ Z. Moreover, Y ”= ÿ;
23As it is well-known, a system of distinct representatives – a transversal of a family of sets –

does not always exist; cf., e.g., [26], Chapter 8.
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otherwise B would have been valid. But the only subsets of X that strongly sc-entail
B are the sets in F. Hence Y = X

¶ for some element, X

¶, of F. But (X Õ flZ) ”= ÿ for
each X

Õ œ F. Hence (X¶ fl Z) ”= ÿ. On the other hand, (Y fl Z) = ÿ due to the fact
that Y is a subset of X \ Z. It follows that Y ”= X

¶. We arrive at a contradiction.
Therefore (X \ Z) ”|= B.

Let us stress that Theorem 18 speaks about any ‰-set of the family of subsets
of X which strongly sc-entail B. There are usually many such sets. Each of them
may be subtracted from X in order to arrive at a subset of X that does not (classi-
cally) entail B. In other words, “deep contraction” can be successfully performed in
many ways and its outcome depends on the ‰-set chosen.24 As for the multiplicity
of possible outcomes, and their dependence on factors di�erent from the set sub-
jected to be contracted and the w� w.r.t. which the operation is performed, deep
contraction does not di�er from other contraction operations characterized in belief
revision theories. Note, however, that deep contraction has a kind of computational
flavour. In order to perform it one needs a ‰-set of the family of subsets of X which
strongly sc-entail B, and this requires that the family has to be “calculated” first.
Given the content of Theorem 5, this, in turn, can be achieved by identifying all the
minimally inconsistent subsets of an inconsistent set of some kind.25 Algorithms for
solving such problems are already known in the literature.26

Remark 10. A set of w�s X supposed to be contracted w.r.t. B may be either
finite or infinite. In the latter case it can happen that the family of subsets of X that
sc-entail B is countably or even uncountably infinite. It follows that the relevant
‰-sets may be infinite. However, we are dealing here with Classical Logic, in which
entailment is compact: everything entailed by an infinite set of w�s is also entailed
by some finite subset(s) of the set. One can easily prove:

24A simple example may be of help. Let X = {p ‚ q æ r, p, q} and B = r. The relevant family
of MI-sets comprises {p ‚ q æ r} and {p ‚ q æ r, q}; let us designate it by F. The ‰(F)-sets are: (1)
{p, q}, (2) {p ‚ q æ r}, (3) {p ‚ q æ r, q}, (4) {p ‚ q æ r, p}. The result of deep contraction of X,
depending on the ‰(F)-set used, is (1’) {p ‚ q æ r}, or (2’) {p, q}, or (3’) {p}, or (4’) {q}. Which
‰(F)-set is to be used depends on epistemic factors. By the way, the example presented above
shows that deep contraction does not amount to subtracting a minimal choice set of the family of
all MI-sets in question.

Belief revision theories view contraction as an operation which is supposed to achieve its goal(s)
in an “economical” manner: the loss should be kept to a minimum. This means many things,
depending on an account advocated. As for deep contraction, the “minimalization of loss” issue is
only of a secondary importance.

25More specifically, all minimally inconsistent subsets of X fi{¬B} such that ¬B belongs to each
of them have to be identified first. Then the family {Y ™ X : Y fi {¬B} is a MI-set and ‘¬B’ /œ Y }
constitutes the solution.

26See, e.g., [12], and [3].
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Corollary 40. Let X be an infinite consistent set of w�s, and let B be a non-valid
w� such that X |= B. If Y is a finite subset of X such that Y |= B, and Z is a
‰(Fú)-set, where Fú = {W ™ Y : W |ª B}, then X fl (Y \ Z) ”|= B.

Proof. Suppose otherwise. Then (Y \ Z) |= B, contrary to Theorem 18.

Thus when entailment is compact, an infinite set X can also be “deeply con-
tracted” w.r.t. B without relying on infinite ‰-set(s) that correspond(s), in the way
described above, to the whole X. It su�ces to use a ‰-set which corresponds to
a finite subset Y of X that classically entails B. Needless to say, the resultant set
X fl (Y \ Z) will be finite.

7.2 Argument Analysis
7.2.1 Strong Entailments and Lehrer’s Notion of Relevant Deductive

Argument

Strong sc-entailment is a special case of strong mc-entailment. There are, however,
close a�nities between the concept of strong sc-entailment and the notion of relevant
deductive argument introduced long ago by Keith Lehrer (cf. [9]). Here is Lehrer’s
definition:

An argument RD is a relevant deductive argument if and only if RD contains a non-
empty set of premises P1, P2, . . . , P

n

and a conclusion C such that a set of statements
consisting of just P1, P2, . . . , P

n

, and ¬C (or any truth functional equivalent of ¬C)
is a minimally inconsistent set. A set of statements is a minimally inconsistent set if
and only if the set of statements is logically inconsistent and such that every proper
subset of the set is logically consistent. ([9], p. 298.)

Is strong sc-entailment just the semantic relation that holds between premises
and conclusions of Lehrer’s relevant deductive arguments? As Theorem 8 illus-
trates, the fact that {P1, . . . , P

n

, ¬C} is a MI-set is a necessary but insu�cient
condition for {P1, P2, . . . , P

n

} |ª C to hold. It is additionally required that ‘¬C’
/œ {P1, P2, . . . , P

n

}. On the other hand, the statement “a set of statements consist-
ing of just P1, P2, . . . , P

n

, and ¬C (or any truth functional equivalent of ¬C)” seems
to secure that the additional requirement is to be met. Anyway, relevant deductive
arguments in Lehrer’s sense (henceforth: rd-arguments) and deductive arguments in
which the conclusion is strongly sc-entailed by the premises – let us refer to them
as to |ª-arguments – share basic properties. In both cases, as stipulated by Lehrer
and witnessed by corollaries 22 and 16, only contingent w�s can serve as premises
and conclusions, and the set of premises is always consistent. Assuming that a set
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of premises of an argument must be non-empty, there is neither rd-argument nor
|ª-argument which leads to a valid w� or to a contradictory/inconsistent conclusion
(cf. corollaries 20 and 17, respectively). So some classes of relevant (in the intuitive
sense of the word) deductive arguments are beyond the scope of either analysis.
On the other hand, our considerations, though indirectly, throw new light of the
properties of rd-arguments. Theorem 11 yields that for each deductive argument A
from a consistent set of premises there exists a corresponding |ª-argument leading
from a finite subset of the set of premises of A to the conclusion of the argument
A. The premises of an |ª-argument are mutually independent (cf. Corollary 25),
and their conclusions always share variable(s) with the premises (cf. Corollary 24).
A multi-premise |ª-argument di�ers from the respective single-premise |ª-argument
based on a conjunction of premises of the multi-premise argument (cf. section 4.2.3).

It seems that the intuitive concept of linked multi-premise deductive argument
can be successfully explicated in terms of strong sc-entailment: a linked multi-
premise deductive argument is an argument whose conclusion is strongly sc-entailed
by the set of premises.

7.2.2 Multiple-Conclusion Arguments?

The concept of argument is sometimes generalized to include arguments contain-
ing a finite number of conclusions. As a result, one gets an unproblematic class of
arguments having exactly one conclusion – let us call them sc-arguments – and a
problematic class of arguments having at least two (but still finitely many) conclu-
sions. Let us call the latter mc-arguments.

As we observed, strong sc-entailment is, in principle, the semantic relation which
holds between premises and conclusions of relevant (in the Lehrer’s sense) deductive
sc-arguments. By analogy, strong mc-entailment can be viewed as singling out an
important class of mc-arguments. We coin them (for the lack of a better idea)
germane mc-arguments. To be more precise, by a germane mc-argument we mean
an mc-argument whose premises strongly mc-entail the set of conclusions of the
argument. The properties of strong mc-entailment pointed out above seem to speak
in favour of this proposal.

There is an ongoing discussion as to whether mc-arguments are artifacts (cf. [17],
[23], [2]). An mc-argument is often identified with the corresponding sc-argument
whose conclusion is a disjunction of all the “conclusions” of the respective mc-
argument. Without pretending to resolve the issue, let us only notice the following.

Consider:
p

p ‚ q

(40)
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and
p

p, q

(41)

Since p |ª p‚q holds, (40) constitutes an |ª-argument. But p Îª {p, q} does not hold
and thus (41) is not a germane mc-argument. So it happens that, having premises
fixed, there exist |ª-arguments leading from the premises(s) to a disjunction, but
there is no germane mc-argument that leads from the premise(s) to the set of dis-
juncts.

Now let us consider:
p ‚ q

p, q

(42)

and
p ‚ q

p

(43)

p ‚ q

q

(44)

(42) is a germane mc-argument, while (43) and (44) are not |ª-arguments. This is
not an exception, but a rule. Due to Corollary 2, if an mc-argument leading from a
disjunction to the set of disjuncts is germane, then there is no |ª-argument that leads
from the disjunction to a single disjunct. In general, the existence of a germane mc-
argument from X to Y excludes the existence of an |ª-argument from X to a single
conclusion that belongs to Y . Similarly, the existence of an |ª-argument leading
from X to a w� which is only one of the elements of a set of w�s Y suppresses the
existence of a germane mc-argument leading from X to Y .

8 Final Remarks
8.1 The First-Order Case
So far we have dealt with the classical propositional case. So a natural question
arises: what, if anything, will change when we move to the first-order level and
consider strong entailments based on First-Order Logic (FOL)?

As it is well-known, sc-entailment in FOL can be defined either in terms of
satisfaction or in terms of truth, and similarly for mc-entailment. However, truth of
a w� in a FOL-model equals satisfaction of the w� under all assignments of values to
individual variables, where the values belong to the universe of the model. Therefore
the respective concepts of entailment do not coincide when sentential functions, that
is, w�s in which free variables occur, enter the picture, although they coincide on
FOL-sentences (i.e. w�s with no free variables). Similarly, inconsistency can be
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defined either as unsatisfiability or as the lack of a FOL-model which makes true
all the w�s in question. These are not the same thing if sentential functions are
allowed.27

When one wants to move from the propositional level to the first-order one, three
possibilities emerge.

The simplest solution is to assume that strong entailments, as well as the other
semantic notions employed, are defined for sentences only. The concept of truth
under a CPL-valuation is to be replaced with the concept of truth in a FOL-model.
Then the results concerning CPL “translate” into the respective results concerning
the “sentential part” of FOL. Of course, this does not pertain to results which rely on
the assumption that the w�s considered are propositional, in particular to Theorem
4. Needless to say, an analogous remark applies to the other options presented below.

The second option is to allow for sentential functions and to replace “true under
a CPL-valuation” with “satisfied in a FOL-model under an assignment of values to
individual variables.” In such a case inconsistency would mean unsatisfiability. There
is, however, a price to be paid. While sc-entailment defined in terms of satisfaction
ensures the transmission of truth, mc-entailment defined by means of satisfaction
(i.e. roughly, by the clause: “for every assignment ÿ: if all the w�s in X are satisfied
under ÿ, then at least one w� in Y is satisfied under ÿ”) does not warrant the existence
of a true w� in Y when all the w�s in X are true. This lack of warranty shows up in
the case of mc-entailed sets containing sentential functions. As a consequence, the
intuitive meaning of the concept of strong mc-entailment changes.

As for the third option, one allows for sentential functions and replaces “true
under a CPL-valuation” with “true in a FOL-model.“ Now consistency of a set of
w�s would mean the existence of a FOL-model which makes all the w�s true. Con-
tingent w�s are these which are true in some, but not all FOL-models. However,
sc-entailment of A from X amounts to inconsistency of the set comprising X and
the negation of the universal closure of A. Similarly, mc-entailment between X and
Y holds i� the set X, ¬Y is inconsistent, where Y is the set of universal closures of
elements of Y . So a “translation” of results concerning CPL should be performed
with caution. In particular, whenever consistency/inconsistency of propositional
formulas of the form ¬A or sets of such formulas have been considered, first-order
w�s of the form ¬A, where A is the universal closure of A, should be used. For
example, the FOL counterparts of theorems 5 and 8 now are:

X Îª Y i� X fl ¬Y = ÿ and X, ¬Y is a MI-set.

27For instance, the set {P (x), ¬’xP (x)}, where P is a one-place predicate, is satisfiable, but
there is no FOL-model which makes its elements simultaneously true.
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X |ª B i� ‘¬B ’ /œ X and X, ¬B is a MI-set.

Another example is this. What we have called “deduction theorems” for strong
entailments (cf. theorems 7 and 26), relied upon Corollary 11. However, its counter-
part does not hold for FOL when entailments are defined in terms of truth. Instead,
we have:

Z, A Î= W i� Z Î= ÁA æ W Ë.

As a consequence, in order to get counterparts of theorems 7 and 26 one has to
replace A with A. An analogous remark pertains to corollaries 12, 27, and 28.

8.2 Further Research: Strong Entailments in Non-Classical Logics

In this paper we have concentrated upon Classical Logic. A natural next step is
to turn to non-classical logics. Which of the results presented above would remain
valid if we defined strong entailments in terms of entailments based on a non-classical
logic? No doubt, this is an interesting question. Yet, it deserves a separate paper or
even a series of papers. So let me only comment on the relation between the concepts
of strong entailments and the concept of minimally inconsistent set. Theorems 5 and
8 (as well as their counterparts for FOL) show how these concepts are interconnected
for Classical Logic. However, analogues of theorems 5 and 8 fail in some non-classical
logics. Negationless logics provide trivial examples here, but there are others. For
instance, in Intuitionistic Logic (INT) the following:

{¬¬p, ¬p} |=
INT

‹

{¬¬p} ”|=
INT

‹

{¬p} ”|=
INT

‹

hold and thus {¬¬p, ¬p} can be regarded as a MI-set. Needless to say, ’¬p’ /œ {¬¬p}.
On the other hand, we have:

¬¬p ”|=
INT

p

and hence, assuming that strong sc-entailment presupposes sc-entailment, ¬¬p and
p are not linked with strong sc-entailment. It follows that the “intuitionistic” ana-
logues of theorems 8 and 5 do not hold.
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Appendix: Soundness and Completeness of MICPL

In order to prove soundness and completeness of the calculus MICPL with respect to
MI-sets we need a series of corollaries and lemmas.

As an immediate consequence of definitions introduced in Section 6 we get

Corollary 41. X is a MI-set i� there exists an ordered sequent C

[≠æm]
≠æ
m

„ such that
X = w�(C [≠æm]

≠æ
m

„) and

1. w�(C [≠æm]
≠æ
m

„) is an inconsistent set, and

2. for each k œ {1, . . . , m}: the set w�(f\[k](C
[≠æm]
≠æ
m

) „) is consistent.

The following hold:

Lemma 2.

1. w�(S Õ
–

[i] Õ
T „) is inconsistent i� w�(S Õ

–

[i]
1

Õ
–

[i]
2

Õ
T „) is inconsistent.

2. w�(S Õ
—

[i] Õ
T „) is inconsistent i� w�(S Õ

—

[i]
1

Õ
T „) is inconsistent and

w�(S Õ
—

[i]
2

Õ
T „) is inconsistent.

3. w�(S Õ
A

[i] Õ
T „) is inconsistent i� w�(S Õ ¬¬A

[i] Õ
T „) is inconsistent.

Lemma 3.

1. If �; ‡ „; � results from �; ◊ „; � by a rule of MICPL, then the set w�(‡ „) is
inconsistent i� w�(◊ „) is an inconsistent set.

2. If �; ‡1 „; ‡2 „; � results from �; ◊ „; � by a rule of MICPL, then both w�(‡1 „)
and w�(‡2 „) are inconsistent sets i� w�(◊ „) is an inconsistent set.

Proof. If �; ‡ „; � results from �; ◊ „; � by a rule of MICPL, then ◊ involves a
numerically annotated –-w� or a numerically annotated double negated w�. But
X, – Î= ÿ i� X, –1, –2 Î= ÿ, and X, ¬¬A Î= ÿ i� X, A Î= ÿ.

If �; ‡1 „; ‡2 „; � results from �; ◊ „; � by a rule of MICPL, then a numerically
annotated —-w� is a term of ◊. Yet, X, — Î= ÿ i� X, —1 Î= ÿ and X, —2 Î= ÿ.

Lemma 4. If a seqsequent � results from a seqsequent � by a rule of MICPL, then
the following conditions are equivalent:

1. for each constituent ‡ „ of �: the set w�(‡ „) is inconsistent,

2. for each constituent ◊ „ of �: the set w�(◊ „) is inconsistent.

2516



Entailment, Transmission of Truth, and Minimality

Proof. By Lemma 3.

Theorem 12 (Soundness w.r.t. MI-sets). Let X be a finite non-empty set of w�s,
and let ‡ „ be an ordered sequent such that w�(‡ „) = X. If the sequent ‡ „ is
provable in MICPL, then X is a MI-set.

Proof. Let C

[≠æm]
≠æ
m

„ be an arbitrary but fixed ordered sequent such that
X = w�(C [≠æm]

≠æ
m

„). Assume that
�1, . . . , �

n

(45)

is a proof of the sequent C

[≠æm]
≠æ
m

„ in MICPL. By Definition 7, each constituent of �
n

is
a closed atomic sequent. Hence the set w�(◊ „) is inconsistent for each constituent
◊ „ of �

n

. Therefore, by Lemma 4, the set w�(C [≠æm]
≠æ
m

„) is inconsistent, that is, X is
inconsistent.

We shall prove the following:

(F) if �
j+1 has a constituent, ‡ „, such that the set w�(f\[k](‡) „) is consistent,

then �
j

has a constituent, ◊, such that the set w�(f\[k](◊) „) is consistent,
where 1 6 j < n and 1 6 k 6 m.

Let ‡ „ be a constituent of �
j+1 for which the set w�(f\[k](‡) „) is consistent.

Recall that rules of MICPL “act locally”: if a rule is applied to a seqsequent, only
one constituent and only one occurrence of a na-w� in the constituent are acted
upon (more precisely, only one term of the sequence of na-w�s which occurs in the
constituent is transformed). When �

j+1 results from �
j

by a rule, the following
cases are possible:

(a) ‡ „ has been rewritten from �
j

into �
j+1 (since a rule has been applied to �

j

w.r.t. some other constituent of it),
(b) the occurrence of ‡ „ in �

j+1 is due to an application of a rule to �
j

w.r.t. a
constituent, say, ◊ „, of �

j

.

If (a) is the case, then (F) holds trivially. So assume that (b) holds. Two sub-cases
are possible:

(b1) a rule has been applied to �
j

w.r.t. the constituent ◊ „ and a term of ◊

annotated with k,
(b2) a rule has been applied to �

j

w.r.t. the constituent ◊ „ and a term of ◊ which
is annotated with some numeral j di�erent from k.
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If (b1) holds, then w�(f\[k](◊) „) = w�(f\[k](‡) „), so the set w�(f\[k](◊) „) is
consistent. Assume that (b2) is the case. Suppose that the set w�(f\[k](◊) „) is
inconsistent though w�(f\[k](‡) „) is a consistent set. Both w�(f\[k](‡) „) and
w�(f\[k](◊) „) do not contain w�s annotated with k. So the hypothetical inconsis-
tency of the set w�(f\[k](◊) „) is due to the occurrence in ◊ of some w�s(s) annotated
with numeral(s) di�erent from k. Observe that the inconsistency of w�(f\[k](◊) „)
yields the inconsistency of the set w�(◊ „). However, ‡ „ is a constituent of �

j+1
because a rule has been applied to �

j

w.r.t. ◊ „ and a w� annotated with a numeral
di�erent from k. Thus, by Lemma 2, the set w�(‡ „) is inconsistent. Moreover,
its inconsistency is due to the occurrence in ‡ of w�s annotated with numerals
di�erent from k. Therefore the set w�(f\[k](‡) „) is inconsistent. We arrive at a
contradiction. This completes the proof of (F).

The sequence (45) is supposed to be a proof, so, by Definition 7, for any k œ
{1, . . . , m} there exists a constituent, say, fl „, of �

n

such that, as f\[k](fl „) is
either ÿ „ or is an open atomic sequent, the set w�(f\[k](fl) „) is consistent. Thus,
by (F) proven above, any term/seqsequent of (45) has a constituent, ’ „, such
that w�(f\[k](’) „) is a consistent set of w�s. But the sequent C

[≠æm]
≠æ
m

„ is the only
constituent of �1. Hence w�(f\[k](C

[≠æm]
≠æ
m

„) is a consistent set. As k was an arbitrary
element of {1, . . . , m}, by Corollary 41 it follows that X is a MI-set.

An auxiliary concept is needed.
Definition 13 (MICPL-transformation of a sequent). A MICPL-transformation of a
sequent ‡ „ is a finite sequence �1, . . . , �

n

of seqsequents such that: (a) �1 = È‡ „Í,
and (b) �

j+1 results from �
j

by a rule of MICPL for 1 6 j < n.
Theorem 13 (Completeness w.r.t MI-sets). If X is a MI-set, then any ordered se-
quent ‡ „ such that w�(‡ „) = X is provable in MICPL.
Proof. A moment’s reflection on the rules of MICPL reveals that for each ordered
sequent ‡ „ such that w�(‡ „) is an inconsistent set of w�s, there exist MICPL-
transformations of the sequent which end with seqsequents whose constituents are
closed atomic sequents only.

Assume that X is a MI-set, and that C

[≠æm]
≠æ
m

„ is an ordered sequent such that
w�(C [≠æm]

≠æ
m

„) = X. Since X is a MI-set, w�(C [≠æm]
≠æ
m

„) is an inconsistent set. Let

�1, . . . , �
n

(46)

be a MICPL-transformation of the sequent C

[≠æm]
≠æ
m

„ such that each constituent of �
n

is a closed atomic sequent. Suppose that the transformation (46) is not a proof of
C

[≠æm]
≠æ
m

„.
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The transformation (46) can be depicted as:

�1 ΩÚ R[i1]
x

(47)

�2 ΩÚ R[i2]
x

. . .

�
n≠1 ΩÚ R[i

n≠1]
x

�
n

where ‘ΩÚ R[i
j

]
x

’ indicates that the rule applied to �
j

acts upon a w� annotated with
i

j

(more precisely, upon an occurrence of such a w� in a sequent that belongs to
�

j

).
If the transformation (46) is not a proof, then, by Definition 7, there exists an

index k, where 1 6 k 6 m, such that for each sequent ◊ „ which occurs in �
n

,
f\[k](◊) „ is a closed atomic sequent.

Suppose that m = 1. Thus X is a singleton set, each rule of (47) acts upon a w�
annotated with 1, and all the w�s which occur in �

n

are annotated with 1. Hence
f\[1](◊) „ = ÿ „ for any constituent ◊ „ of �

n

. It follows that there is no constituent
of �

n

such that f\[1](◊ „) is a closed atomic sequent. We arrive at a contradiction.
Thus m ”= 1.

We proceed as follows. First, we remove from (47) each �
j

which is associated
with ΩÚ R[k]

x

, that is, we skip all the lines of (47) in which a rule acts upon a w�
annotated with k. Let

�ú
1, . . . , �ú

h

(48)

stand for the subsequence of (46) obtained from it in this way. Each �ú
j

, where
1 6 j 6 h, is a sequence of sequents. Let �ú

j

= È›1 „, . . . , ›

s

„Í. We define �úú
j

as:

Èf\[k](›1) „, . . . , f\[k](›s

) „Í (49)

Since f\[k](›i

) „ is a sequent for 1 6 i 6 s, (49) is a seqsequent. Then we consider
the following sequence of seqsequents:

�úú
1 , . . . , �úú

h

(50)

Observe that w�s annotated with k do not occur in any constituent of any elemen-
t/term of (50). Clearly, f\[k](C

[≠æm]
≠æ
m

) „ is

C

[1]
1 , . . . , C

[k≠1]
k≠1 , C

[k+1]
k+1 , . . . , C

[m]
m

„ (51)
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It is easily seen that (50) is a MICPL-transformation of the sequent (51). On the
other hand, each constituent of �úú

h

is a closed atomic sequent and hence w�(◊ „)
is inconsistent for any constituent ◊ „ of �úú

h

. Thus, by Lemma 4,

{C1, . . . , C

k≠1, C

k+1, . . . , C

m

} (52)

is an inconsistent set of w�s. But (52) is a proper subset of X. Therefore X is not
a MI-set. We arrive at a contradiction. This completes the proof.

Theorem 14. If there exists a MICPL-disproof of an ordered sequent C

[≠æm]
≠æ
m

„, then
the set w�(C [≠æm]

≠æ
m

„) is inconsistent, but is not a MI-set.

Proof. Let
�Õ

1, . . . , �Õ
n

(53)

be an arbitrary but fixed disproof of C

[≠æm]
≠æ
m

„. Everything what has been said, in the
above proof of Theorem 13, about the transformation (46), can be repeated with
regard to the disproof (53) (of course, after replacing �

j

with �Õ
j

for 1 6 j 6 n).
So w�(C [≠æm]

≠æ
m

„) is not a MI-set. Yet, due to Definition 8 and Lemma 3, it is an
inconsistent set.

Theorem 15. If X is a finite inconsistent set of w�s which is not a MI-set, then
any ordered sequent ‡ „ such that w�(‡ „) = X is disprovable in MICPL.

Proof. Let X be an arbitrary but fixed finite inconsistent set of w�s which is not a
MI-set. We define:

� = {‡ „ : w�(‡ „) = X and ‡ „ is an ordered sequent}

Let � be the set of all MICPL-transformations of sequents in �. As X is inconsistent,
� includes a non-empty subset �0 of MICPL-transformations each of which ends with
a seqsequent involving closed atomic sequent(s) only. By assumption, X is not a
MI-set. Thus, by Theorem 12, no element of �0 has a MICPL-proof. Therefore each
transformation in �0 violates the fourth clause of Definition 7. Hence �0 comprises
MICPL-disproofs of the sequents in �.
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