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Preface

The importance of questions is beyond doubt. But the degree of atten-
tion paid to them in logic and linguistics is still less than they deserve. For
decades research on questions focused on their representation as well as the
answerhood problem. The priorities started to change in the 1980’s. Generally
speaking, research on how questions function (in inquiry, dialogues, reason-
ing, issue management, and so forth) gradually overshadowed research on what
questions are. This change in perspective has been initiated by Jaakko Hintikka
with his Interrogative Model of Inquiry.

The interest in questions and questioning is currently growing. In particular,
questions became a full-fledged category in dynamic epistemic logic (cf. e.g.,
Minicǎ (2011), van Benthem and Minicǎ (2012), Pelǐs and Majer (2011)), and
in belief revision theory (cf. Olsson and Westlund (2005), Enqvist (2010)).
Theories of questions became indispensable constituents of dialogue theories
(cf. Ginzburg (2012), Asher and Lascarides (2003)). Logic of questions attracted
attention of the adaptive logic community (see e.g. Meheus (2001), De Clercq
(2005), Batens (2007)). And, last but not least, research on questions is an
important part of the inquisitive semantics programme (cf. e.g. Groenendijk
and Roelofsen (2009), Groenendijk (2011)).

This book presents an inferential approach to the logic of questions.1 The
core part of it is Inferential Erotetic Logic, that is, to speak generally, a logic
which analyses inferences which have questions as conclusions and gives an
account of validity of these inferences. The idea originates from the late 1980’s.
The monograph Wísniewski (1995) summarizes results obtained until the early
nineties. Many things have happened since then. Although the core insights
have remained unchanged, a more general account of Inferential Erotetic Logic
was elaborated and some applications became known.

The book consists of three parts.

The chapters included in the second part, with the exception of the last one,
provide an introduction to Inferential Erotetic Logic. An attempt was made to
express the basic ideas as simply as possible. Moreover, the account presented is

1 The logic of questions is sometimes labelled erotetic logic, from Greek “erotema”
meaning “question”.



2 Preface

more general than that taken in the 1995 monograph. In particular, we operate
within a setting that does not presuppose Classical Logic and model-theoretic
semantics.

The setting is described in the first part of the book. It is called Minimal
Erotetic Semantics. The name is a telling one. The assumptions are really
minimal, but still enable us to introduce some important concepts pertaining
to questions and questioning.

As might be expected, the conceptual apparatus of Inferential Erotetic Logic
has found successful applications in the area of problem solving. But, somewhat
unexpectedly, the area of applicability has extended to proof theory. The last
chapter of Part Two, and the whole of Part Three are devoted to these issues.
Chapters 11 and 12 are rather technical due to the fact that they include some
material that is published here for the first time. The remaining chapters are
written in a more relaxed way. However, we always give the reader an indication
as to where to find proofs and other technical details.

I am very grateful to Dorota Leszczyńska-Jasion, Pawe l  Lupkowski and
Mariusz Urbański for their valuable comments which enabled me to improve
earlier versions of this book. I am especially indebted to Jonathan Ginzburg
for encouragement, criticism and help. Needless to say, all errors are mine.

Work on substantial parts of this book was possible due to the financial sup-
port of the National Science Council, Poland (DEC-2012/04/A/HS1/00715).

Poznań, June 2013



Part I

Questions





1

Questions: an Informal Analysis

Natural languages include questions of different kinds or types. The terminol-
ogy pertaining to questions vary from theory to theory, however. According to
Harrah (2002), the following labels for question-types are used by most theorists
(examples are also taken from Harrah (2002), pp. 1–2):

Label Example

whether Is two even or odd?
yes-no Is two a prime number?
which Which even numbers are prime?
what What is Church’s Thesis?
who Who is Bourbaki?
why Why does two divide zero?
deliberative What shall I do now?
disjunctive How long is your new proof, or do you have

a shorter one?
hypothetical If you had a proof, how long would it be?
conditional If you now have a proof, how long is it?
given-that Given that Turing’s Conjecture is provable, is

Church’s Thesis provable?

The list is by no means exhaustive. One can easily add to it when, where,
how, etc. Linguists tend to speak about constituent, alternative, and polar ques-
tions.

In this chapter we give an informal analysis of some basic categories of nat-
ural language questions. For convenience, we label the categories with descrip-
tive names. These names are not commonly used in the literature. However, we
chose them for a reason: it is better to use less theory-laden terms in a general
presentation of an area.

1.1 Open-condition questions

There are questions which, generally speaking, express open conditions re-
quested to be filled. An appropriately filled condition contributes to – and
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in some cases even is – an answer to the question which an idealized answerer
would eventually give. Certain who, where and when questions, as well as some,
but not all, what, how and which questions, are of this kind.

As an illustration, let us consider:

Who went for a walk? (1.1)

Where did Bill go? (1.2)

The open conditions are:

. . . went for a walk (1.3)

Bill went to . . . (1.4)

But what does it mean that an open condition is appropriately filled?

Clearly, both “who” and “where” set the kinds of objects that are supposed
to satisfy the relevant open conditions. Similarly for “when”, “how often”, “how
many”, “how much”, “how far”, “how long”, “what time”, “which boy”, “which
even number(s)”, and so forth. So open conditions should be completed with
expressions that refer to objects of the relevant categories: persons, places, etc.
This, however, raises two issues.

First, how many persons/places – and in general: objects of the required
kind – should be referred to in an answer? Depending on the solution, different
readings of interrogative sentences emerge. The principal options are:1

Option Label

only one one-case reading

possibly multiple examples case-or-cases reading

a complete list all-the-cases reading

Consider the following statements:

Bill went for a walk. (1.5)

Bill, Mary and Harry went for a walk. (1.6)

Bill, Mary, Harry, and only they went for a walk. (1.7)

When (1.1) is construed as one-case question, statement (1.5) is a possible
answer to the question. Statements (1.5) and (1.6) can be regarded as examples
of answers to (1.1) understood as case-or-cases question. Statement (1.7) is a
possible answer to (1.1) read as all-the-cases question.

The second issue is: how persons/places – and in general: objects belonging
to the relevant categories – should be referred to?

In particular, is giving a proper name necessary? Certainly not. Consider:

Philosophers went for a walk. (1.8)

Some drunk guys went for a walk. (1.9)

1 These are qualitative options. Some theorists supplement them with certain quan-
titative options.
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Some drunk guys, and only them went for a walk. (1.10)

What is more, one may wonder if responding to a who-question or a where-
question with a name (of an object belonging to the relevant category) is always
sufficient. For example, reply (1.5) to question (1.1) is a satisfactory answer only
if it is known who Bill is. Similarly, the following reply to question (1.2):

Bill went to Monclova. (1.11)

is a satisfactory answer only if it is known what Monclova is.

The situation is analogous in the case of other questions of the analysed
kind.

Some semantic constraints. It cannot be said that every question is sub-
jected to each of the understandings sketched above. Let us consider:

Who is Bill’s biological father? (1.12)

A man has exactly one biological father and thus only the one-case reading is
possible.

As for (1.12), some meaning component of the condition fixes the reading.
Sometimes, however, the effect is due to the interrogative phrase only. Here is
an example:

How many students has he got? (1.13)

Finally, the grammar can exclude the one-case reading. Please consider:

Which even numbers are prime? (1.14)

Context. A natural-language question is always asked in a context: social,
theoretical, of an explanation previously given, of a story just told, etc. Thus
although questions permit diverse readings, the context usually disambiguates
them. The disambiguation pertains both to the “how many” issue and the
“how-to-refer-to” issue. For instance, question (1.1) asked by a policeman in-
vestigating a criminal case is most likely to be understood as an all-the-cases
question where the relevant persons should be referred to with their first and
last names.

If needed, the disambiguation effect can also be achieved by linguistic means.
The simplest way is to add an imperative sentence to an interrogative one. For
instance:

Who went for a walk? Please give the first and last name

of each of them. (1.15)

Multiple wh-questions. The picture gets more complicated when multiple
wh-questions are taken into consideration. Let us consider:

Who likes whom? (1.16)

Which boys love which girls? (1.17)

For simplicity, assume that it is sufficient to refer to boys and girls with their
first names. Still, it is unclear whether an answer to (1.17) is supposed to specify



8 1 Questions: an Informal Analysis

a list of boys together with associated sub-lists of girls (namely, girls loved by
a given boy), or is supposed to specify a list of “boy-girl” couples. Moreover,
the “how much” issue remains open, also at the conceptual level.2

1.2 Delimited-condition questions

There are questions that express a condition to be filled, yet associated with a
list of instances. These instances delimit the condition by specifying the relevant
options.

Consider the following:

Who went for a walk: Bill, Mary, or Harry? (1.18)

Where did Bill go: somewhere in Poland, or to Siberia? (1.19)

The condition included in (1.18) is supposed to be filled by “Bill”, “Mary”, or
“Harry”; the results constitute the “alternatives” offered by the question. Thus
the “how-to-refer to” issue does not arise. However, (1.18) can still be construed
as one-case, or case-or-cases, or all-the-cases question. Question (1.19) can be
viewed analogously.

Now let us consider:

Which is Bill’s favourite painter: Matisse or Cezanne? (1.20)

Since both “favourite” and “which” presuppose uniqueness, only the one-case
reading is possible. Similarly, the following:

What did Bill do: stayed at home or went for a walk? (1.21)

permits only the one-case reading. Again, the reason is semantic, though a
different one than before: one cannot stay at home and to go for a walk at the
same time. In other words, the “alternatives” offered by the question exclude
each other.

Delimitation by context. It often happens that the meaning of an inter-
rogative sentence that primarily expresses an open-condition question is the
same as the meaning of the corresponding delimited-condition question. For
instance, if you were just told that Andrew left for Paris, London, or Moscow,
you would construe the interrogative sentence “Where did Andrew leave for?”
as a delimited-condition question. Much more can be said about how contex-
tual factors determine meanings of some interrogative sentences3, but since
this chapter is of an introductory character, we will not address this issue more
extensively here.

2 For multiple wh-questions see, e.g., Kubiński (1971), Kubiński (1980), Higgin-
botham and May (1981), Ginzburg and Sag (2000).

3 Cf. e.g. Ginzburg (1995).
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1.3 Choice questions

Some questions do not involve any explicit conditions in their contents, but,
instead, list certain “alternatives” among which a choice is requested to be
made. Let us consider the following yes-no question:

Did Bill go for a walk? (1.22)

The most predictable replies are “Yes” and “No”. The first corresponds to the
alternative explicitly listed:4

Bill went for a walk. (1.23)

However, the alternative that corresponds to “No” is not explicitly listed. As
for the example considered, “No”, depending on the context (and possibly some
pragmatic factors, such as the accentuation in which (1.22) is uttered) means
either:

It is not the case that Bill went for a walk. (1.24)

or:
It was not Bill, but someone else who went for a walk. (1.25)

or:
Bill did something else than to go for a walk. (1.26)

or even:
Bill went, but not for a walk. (1.27)

Thus the category of yes-no questions is not homogeneous.5

A whether-question explicitly lists all the relevant alternatives. When only
two alternatives are listed, these alternatives usually exclude each other, as in:

Is Bill a genius, or an idiot? (1.28)

but this is not a rule, viz.:

Is Bill a logician, or a philosopher? (1.29)

Question (1.29) permits the one-case, case-or-cases, and all-the-cases readings.
The latter licenses the following choices: “Bill is a logician but not a philoso-
pher”, “Bill is a philosopher but not a logician” and “Bill is both a philosopher
and a logician”. The case-or-cases reading licenses: “Bill is a logician”, “Bill is
a philosopher” and “Bill is both a logician and a philosopher”.

4 In English a simple grammatical transformation is needed. In Polish even this is
not necessary. The Polish translation of (1.22) is “Czy Bill poszed l na spacer?”,
and of (1.23) is “Bill poszed l na spacer.”

5 An analogy to the de dicto – de re distinction known from modal logic suggests
itself. When the second alternative is a sentential negation of the alternative ex-
plicitly listed, the question is de dicto; when only a (proper) constituent of the first
alternative is “negated”, the question is de re. Of course, the subcategory of de re
yes-no questions splits further, as the above example illustrates.
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Choice questions often have their direct counterparts among delimited-
condition questions, and vice-versa. Yet this is not a general rule. Here are
counter-examples.

Has Bill left for a while, or has he never lived here? (1.30)

Is Bill a philosopher, or a poet, or does he only like to

impress people with clumsy statements? (1.31)

Finally, let us consider the following interrogative sentence:

Is Bill happy and rich? (1.32)

(1.32) can be construed either as a (de dicto) yes-no question or as a conjunctive
question. In the latter case the following choices are licensed: “Bill is happy and
rich”, “Bill is happy but not rich”, “Bill is not happy, but he is rich”, and “Bill
is neither happy nor rich”.

1.4 Topically-oriented questions

The last category of natural language question we are going to distinguish
here is, at first sight, very heterogeneous. Any of the following is a question
belonging to the category:

Why did Bill divorce for the first time? (1.33)

Why are logicians more handsome than philosophers? (1.34)

Why does copper turn green when exposed to air? (1.35)

How are you going to resolve this problem? (1.36)

How did it happen that Bill became a logician? (1.37)

What do you know about the case? (1.38)

What do the above questions have in common? First, some negative property:
none of them specifies, directly or even indirectly, the list of relevant alterna-
tives. Second, they display some features (see below) which differentiate them
from open-condition questions analysed in section 1.1. Third, all of them can
be informally described as topically-oriented.

As for why-questions, one could have analysed them as expressing a condi-
tion of the form:

% because . . . (1.39)

(where % stands for the declarative sentence that “occurs” in a question6) re-
quested to be filled. Yet, the mere “why” does not set the kind of objects that
are supposed to satisfy condition (1.39). The meaning of “because” depends on
the meaning of % and, what is more important, in order to have an account of

6 We have used quotation marks, because in English a simple grammatical transfor-
mation is required. In Polish no transformation is necessary; why-questions have
the form “Dlaczego %?”.
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possible meanings one needs tools stronger than these offered by logic or lin-
guistics themselves. The so-called models of explanation are illuminating here,
but they lie outside logic or linguistics proper. The models determine how to
appropriately fill condition (1.39).7 It is clear, however, that explanation of
actions, of facts, and of laws diverge. Moreover, contemporary philosophy of
science offers many models of each of these kinds of explanation. The only gen-
eral claim concerning why-questions is: they are topically-oriented, where the
topic is an explanation.

The situation with the remaining questions cited above is even worse. One
would not achieve much progress by analysing them as requests to fill the open
conditions:

I am going to resolve this problem in the following way: . . . (1.40)

. . . and then Bill became a logician. (1.41)

This is what I know about the case: . . . and . . . and . . . (1.42)

What can be said by now is: they are topically-oriented, where the topics are
a way of resolving a problem, the genesis of an event, and knowledge about a
case, respectively.

Needless to say, topically-oriented questions constitute a hard nut for the
analysis of questions, both logical and linguistic.

Remarks. It cannot be said that the categories distinguished above cover the
whole realm of questions. We did not aim at completeness, however. Neither we
aimed at exactness. Even the degree of originality of the proposed account is,
say, moderate: we relied upon ideas present in various theories. But our goals
were different. Besides obvious introductory purposes, we wanted to illustrate
two claims. First, the area of questions is far from being homogeneous. Second,
similarly as in the cases of declaratives and imperatives, meanings of interrog-
ative sentences are often co-determined by contextual/pragmatic factors. As
a matter of fact, these are the main reasons for which providing an adequate
formal analysis of questions still constitutes a difficult task.

A brief historical digression. In the late fifties/early sixties of the 20th
century the conceptual apparatus of modern formal logic begun to be exten-
sively applied in the area of questions and questioning. Gerold Stahl, Tadeusz
Kubiński, David Harrah, Nuel D. Belnap, and Lennart Åqvist established the
first widely elaborated logical theories of questions.8 These theories disagreed in
many respects. A lot of things happened since then, new theories were proposed
and linguists entered the game. What has remained unchanged, however, is the
lack of agreement concerning the basic concepts and, what is more striking, the
general perspective.

The survey paper Harrah (2002) provides a comprehensive exposition of log-
ical theories of questions elaborated till late 1990s. Supplementary information

7 For this approach to why-questions see e.g. Kuipers and Wísniewski (1994),
Wísniewski (1999), Grobler and Wísniewski (2005), Grobler (2006).

8 The story is told in detail in Harrah (1997).
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about more linguistically oriented approaches can be found, e.g., in Groenendijk
and Stokhof (1997) (reprinted as Groenendijk and Stokhof (2011)) and Krifka
(2011). The paper Ginzburg (2011) provides a survey of recent developments in
the research on questions, both in logic and in linguistics. A general overview
of approaches to questions and their semantics can also be found in Wísniewski
(201xb).



2

Questions of Formal Languages

2.1 Augmenting formal languages with questions

A logician interested in questions and questioning most often starts with a
formal (or formalized) language which initially does not contain direct coun-
terparts of questions. Generally speaking, questions/interrogatives can be in-
corporated into a formal language in two ways.

1. (The “Define within” approach.) One can embed questions into a language.
To be more precise, one can regard as questions some already given well-formed
formulas differentiated by some semantic feature(s), or construe questions as
meanings of some specific (but already given) well-formed formulas.

This way of proceeding is natural when the so-called paraphrase approach
to questions is adopted, that is, it is believed that the meaning of an interrog-
ative sentence can be adequately characterized by a paraphrase that specifies
the typical use of the sentence or the relevant illocutionary act performed in
uttering the sentence. For example, one can claim that the following:

Does Bill like Mary? (2.1)
is synonymous with:

Bring it about that I know whether Bill likes Mary. (2.2)

or with:
I request that you assert that Bill likes Mary

or deny that Bill likes Mary. (2.3)

The paraphrase (2.2) can be formalized within a setting which involves epis-
temic operators and imperative operator(s). (2.3), in turn, can be formalized
within a logical theory of illocutionary acts.1 In both cases no separate, prim-
itive syntactic category of interrogatives is needed. For convenience, one can
then define “interrogative formulas”, but they will be only abbreviations of
their counterparts, and, what is more important, their semantics is just the
semantics of the relevant well-formed formulas.

1 (2.2) is a Hintikka-style paraphrase (cf. e.g. Hintikka (1976), Hintikka (1978)),
while (2.3) agrees with Vanderveken’s-style approach to questions (cf. Vanderveken
(1990)).
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2. (The “Enrich with” approach.) One can enrich a language with ques-
tions/interrogatives. In order to achieve this, one adds to the vocabulary some
question-forming expressions and then introduces questions/interrogatives syn-
tactically, as a new category of well-formed formulas. The new category is dis-
joint with the remaining categories. This way of proceeding is natural when
questions are conceived in accordance with the independent meaning thesis,
according to which the meaning/semantic content of an interrogative sentence
cannot be adequately characterized in terms of semantics of expressions that
belong to other categories.

The second approach is sometimes called the method of interrogative exten-
sions.2

Regardless of which approach is adopted, one ends with a class of erotetic
formulas or e-formulas for short.

E-formulas of a formal language can be identified with questions of the
language. This does not presuppose that questions are defined in purely syn-
tactic terms. They can be characterized in semantic terms, as the well-formed
formulas that “correspond” to questions semantically construed or have the
semantic property of being a question. In general, the sets of e-formulas and
declarative well-formed formulas (d-wffs for short) need not be disjoint. Usually
they overlap when the “define within” approach is adopted, and are disjoint
otherwise.

Terminology. When referring to natural-language questions we will be using
the acronym NLQ (after natural-language question).

2.2 Questions vs. answers

Characterizing e-formulas is only the first step. The crucial point is to give
an account of answers to them. This can be (and is!) done in many ways and
by different means. But, of course, not completely arbitrarily. E-formulas are
supposed to represent (at least some) NLQ’s and answers to e-formulas should
formalize/represent possible answers to the corresponding NLQ’s. Usually, one
aims at formalizing/representing potentially resolving answers to NLQ’s. An-
swers of this kind are called, depending on a theory, direct, or conclusive, or
proper, or sufficient, or exhaustive, or complete, or congruent, etc. For brevity,
let us use “principal possible answer” (ppa for short) as a cover term for answers
of the above kinds.

The concept of potentially resolving answer to a NLQ happens to be con-
strued differently in diverse theories. It is also vague because the underlying
intuitions are expressed by using, among others, pragmatic terms, e.g.:

• Harrah: a direct answer “gives exactly what the question calls for. (. . . )
The label ‘direct’ (. . . ) connotes both logical sufficiency and immediacy”
(Harrah (2002), p. 1);

2 The method was introduced by Tadeusz Kubiński in the 1950s (see Kubiński (1960)
and Harrah (1997)).
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• Belnap: direct answers “are directly and precisely responsive to the ques-
tion, giving neither more nor less information than what is called for” (Bel-
nap (1969), p. 124);

• Kubiński: direct answers are “these sentences which everybody who under-
stands the question ought to be able to recognize as the simplest, most
natural, admissible answers to the question” (Kubiński (1980), p. 12);

• Hintikka: a potential conclusive answer is “an answer which would satisfy
the questioner if it were true and if he were in a position to trust the
answer. By a conclusive answer, I mean a reply which does not require
further backing to satisfy the questioner.” (Hintikka (1978), p. 287).

On the other hand, NLQ’s permit multiple readings. Or, to put it differently,
in many cases contextual and/or pragmatic factors co-determine what is “di-
rectly and precisely responsive to the question, giving neither more nor less
information than what is called for”, or what is a just-sufficient (i.e. immediate
and sufficient) possible answer, etc.

In any case, logical theories of questions do assign ppa’s to e-formulas, and
regard e-formulas as formalizations of NLQ’s. So what one really gets is:

(♠) An e-formula Q represents a NLQ Q∗ construed in such a way that
possible answers to Q∗ having the desired semantic and/or pragmatic prop-
erties are represented/formalized by ppa’s to Q.

Example 2.1. Let the desired property be just-sufficiency, i.e. sufficiency con-
joined with immediacy.

• Suppose that, as the outcome of an analysis, we get an e-formula whose set
of ppa’s is:

{Pb, Tb} (2.4)

where P and T are syntactically distinct one-place predicates and b is an
individual constant. The e-formula represents a “choice” NLQ whose set
of possible just-sufficient answers consists of two syntactically distinct sen-
tences made up of a predicate and a proper name, where the predicates are
applied to the name.

• The set of ppa’s equals:
{Pb, Tb, Pb ∧ Tb} (2.5)

The corresponding e-formula formalizes a NLQ which differs from that for-
malized by the previous e-formula in having Pb∧Tb as the additional possible
just-sufficient answer.

• The set of ppa’s is:
{Pb ∧ ¬Tb, Tb ∧ ¬Pb} (2.6)

The corresponding e-formula represents a NLQ which, generally speaking,
requests for an exclusive choice.

• The set of ppa’s equals:

{Pb, Tb,¬(Pb ∨ Tb)} (2.7)
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Now, besides Pb and Tb, “neither” (i.e. ¬(Pb ∨ Tb)) is also a possible just-
sufficient option.

• Finally, the set of ppa’s is:

{Pb ∧ Tb, Pb ∧ ¬Tb,¬Pb ∧ Tb,¬Pb ∧ ¬Tb} (2.8)

The relevant e-formula corresponds to a “partition” NLQ.

2.3 A semi-reductionistic approach

2.3.1 “Knowing a question”

The assignment of ppa’s to e-formulas can be performed in many ways. Yet,
simplicity is always a virtue, and a purely syntactic approach allows us to gain
it for a low price. For this reason we adopt here a syntactic account.

A possible objection is: ppa’s are supposed to satisfy some conditions which
are expressed, inter alia, in pragmatic terms (see above), and the satisfaction
of the relevant conditions is not a matter of syntax. For example, assume that
ppa’s are supposed to be the possible just-sufficient answers. Clearly, there are
cases in which it is strongly context-dependent what sentence may be counted
as a possible and just-sufficient answer to a NLQ. Moreover, there are NLQ’s
for which it makes no sense at all to speak about predetermined sets of pos-
sible just-sufficient answers; some why-questions and how-questions are often
recalled in this context.

However, the above objection is not irrefutable. The following should be
carefully distinguished: (a) ppa’s to NLQ’s, and (b) ppa’s to e-formulas. If the
latter are defined purely syntactically, one can still claim that an e-formula
represents, in the sense described by (♠) above, NLQ(s). If a NLQ has many
readings, it has many representations. The richer the formal language is, the
more we can represent in it.

In view of the account of representation sketched above the famous Hamblin
postulate:3

H2: Knowing what counts as an answer is equivalent to knowing the question.

splits into:

H21 : Knowing a NLQ is equivalent to knowing the e-formula that
represents it.

H22 : Knowing the e-formula is equivalent to knowing what counts as ppa’s
to it.

Thus “knowing a question” often yields a disambiguation.4

3 Cf. Hamblin (1958), p.162.
4 The concept of representation and the above schema can also be used when ppa’s

to questions of formal languages are not defined purely syntactically.
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2.3.2 A semi-reduction to sets of answers

Since ppa’s are what really count, a possibility, and an appealing one, is to
construct e-formulas according to the following schema:

?Θ (2.9)

where Θ is an expression of the object-level formal language such that Θ is
equiform with the expression of the metalanguage which, in turn, designates
the set of ppa’s to the e-formula. For example, when we add the question mark
? and the brackets: {, } to the vocabulary, we can enrich the language with
e-formulas of the form:

?{A1, . . . , An}

where n > 1 and A1, . . . , An are pairwise syntactically distinct declarative
well-formed formulas of the initial language; these formulas are the ppa’s to
the e-formula.

What we have achieved is a kind of semi-reduction of questions to sets of
declaratives. Let us stress that e-formulas are still expressions of an object-level
language. In particular, ?{A,B} 6= ?{B,A}.

An advantage of this semi-reductionistic approach is that it is now extremely
easy to say what counts as a ppa to an e-formula, and what NLQ’s are rep-
resented by the e-formula. A disadvantage is the lack of conciseness in some
cases. However, we can always introduce abbreviations as a remedy to it.

Example 2.2. Consider the interrogative sentence:

Who is Bill: a philosopher or a theologian? (2.10)

Clearly, different readings of (2.10) are allowed. Let Pb stand for “Bill is a
philosopher”, and Tb for “Bill is a theologian”. Suppose that the required prop-
erty of ppa’s to NLQ’s is just-sufficiency. The following e-formulas correspond
to some of the readings (cf. Example 2.1 for details):

?{Pb, Tb} (2.11)

?{Pb, Tb, Pb ∧ Tb} (2.12)

?{Pb ∧ ¬Tb, Tb ∧ ¬Pb} (2.13)

?{Pb, Tb,¬(Pb ∨ Tb)} (2.14)

?{Pb ∧ Tb, Pb ∧ ¬Tb,¬Pb ∧ Tb,¬Pb ∧ ¬Tb} (2.15)

(2.15) can be abbreviated as:

?± |Pb, Tb| (2.16)
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2.4 Exemplary formal languages with questions

In this book we adopt the “enrich with” approach to questions of formal lan-
guages. Below we present examples of languages in which e-formulas occur.
These languages, with the exception of the last one, are built according to the
semi-reductionistic pattern described above. The last language is constructed
differently, but still has a rather simple syntax.

Terminology: questions and direct answers. From now on, principal pos-
sible answers (ppa’s) will be called direct answers. Direct answers to e-formulas
will be defined syntactically. As for NLQ’s, direct answers/ppa’a are supposed
to be the possible just-sufficient answers, where “just-sufficient” means “satis-
fies the request of a question by providing neither less nor more information
than it is requested”. An e-formula Q is supposed to represent, in the sense
specified by (♠) (see page 15), the corresponding NLQ(s).

For purely stylistic reasons, e-formulas of formal languages will be called
below questions of these languages.

We use Q, Q∗, Q1, . . . as metalinguistic variables for questions, and A,
B, C, D, possibly with subscripts, as metalinguistic variables for declarative
well-formed formulas (d-wffs). The context will always decide what language
we have in mind.

Notation. dQ stands for the set of direct answers to question Q.

In the metatheory we assume a version of set theory which incorporates not
only sets, but also classes. We use standard set-theoretical terminology and
notation. The expression “iff” abbreviates “if and only if”.

2.4.1 L?
cpl: A propositional language with questions

Let Lcpl be the language of Classical Propositional Logic (CPL for short) with
¬ (negation), → (implication), ∧ (conjunction), and ∨ (disjunction) as primi-
tive connectives; for simplicity, we do not consider equivalence as a primitive
connective of Lcpl. Well-formed formulas (wffs for short) of Lcpl are defined as
usual. We use p, q, r, s, p1, . . . for propositional variables. We adopt the usual
conventions for omitting parentheses in wffs of Lcpl. The equivalence connective
↔ is defined in the standard way, viz.:

(A↔ B) =df (A→ B) ∧ (B → A)

Now we construct a second language, labelled L?
cpl. The vocabulary of L?

cpl

includes the vocabulary of Lcpl, the following signs: ?, {, }, and the comma.
The language L?

cpl has two categories of well-formed expressions: declarative
well-formed formulas (d-wffs for short) and erotetic formulas, that is, questions.

A d-wff of L?
cpl is simply a wff of Lcpl.

A question of L?
cpl is an expression of the form:

?{A1, . . . , An} (2.17)
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where n > 1 and A1, . . . , An are nonequiform, that is, pairwise syntactically
distinct, d-wffs of L?

cpl (i.e. CPL-wffs). If ?{A1, . . . , An} is a question, then
each of the d-wffs A1, . . . , An is called a direct answer to the question, and
these are the only direct answers to the question. Note that any question of
L?
cpl has at least two direct answers. Observe that the set of direct answers to

a question of L?
cpl is always finite.

Any question of the form (2.17) can be read:

Is it the case that A1, or . . . , or is it the case that An?

However, sometimes a different reading is available. The schema (2.17) is gen-
eral enough to capture most (if not all) of propositional questions studied in
the literature.

For example, a simple yes-no question, that is, a question whose set of direct
answers consists of a sentence and its classical negation, can be formalized as
a question of the form:

?{A,¬A} (2.18)
and read:

Is it the case that A?

The d-wffs A and ¬A are the affirmative answer and the negative answer to
(2.18), respectively.

Conditional yes-no questions with irrevocable antecedents have the form of:

?{A ∧B,A ∧ ¬B} (2.19)

whereas conditional yes-no questions with revocable antecedents are formalized
by:

?{A ∧B,A ∧ ¬B,¬A} (2.20)

A question of the form (2.19) can be read:

It is the case that A; is it also the case that B?

As far as questions of the form (2.20) are concerned, the recommended reading
is:

Is it the case that A?; if so, is it also the case that B?

Questions falling under the schema:

?{A ∧B,A ∧ ¬B,¬A ∧B,¬A ∧ ¬B} (2.21)

can be read:
Is it the case that A and is it the case that B?

They may be called (binary) conjunctive questions.

For the sake of concision we adopt some notational conventions pertaining
to questions which we will frequently refer to. Questions of the form (2.21) will
be abbreviated as:

?± |A,B| (2.22)
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Simple yes-no questions (i.e. questions of the form (2.18)) will be concisely
written as:

?A (2.23)

Further notational conventions will be introduced when needed.

2.4.2 Modal propositional languages with questions

Modal propositional languages with questions are constructed similarly as the
language L?

cpl described above. The difference lies in taking the language Lµ of
a modal propositional logic µ as the point of departure.

To be more precise, we enrich the vocabulary of Lcpl with the modal opera-
tors ♦ of possibility and/or � of necessity.5 As a result, we get the vocabulary
of the language, Lµ, of a modal propositional logic µ. Wffs of Lµ are defined
in the standard manner. Then we build the language L?

µ. We enrich the vo-

cabulary of Lµ with the signs: ?, {, }, and the comma. The d-wffs of L?
µ are

the wffs of Lµ. Questions of L?
µ are expressions of the language falling under

the schema (2.17) specified above; direct answers are characterized analogously.
The conventions introduced in the previous section apply accordingly.

Let us consider questions of the form:

?{A,♦A,�A,¬A,♦¬A,�¬A} (2.24)

where A is a CPL-wff, and ♦ as well as � are understood as alethic modalities.
Some theorist claim that ppa’s to polar questions comprise not only a sentence
and its negation, but also the relevant “modalized” statements.6 Questions of
the form (2.24) correspond to polar questions construed that way.7

Note that the transition from (2.18) to (2.24) fits a certain general pattern:
when we have a question falling under the schema:

?{A1, . . . , An} (2.17)

we also have the corresponding question of the form:

?{A1,♦A1,�A1, . . . , An,♦An,�An} (2.25)

However, ♦ and � need not be understood as alethic modalities. It is, in
a sense, natural to construe “It is possible that” occurring in an answer as an
epistemic modality, for example as “It is not ruled out” or “It is thought as
possible”. Under such a reading a modalized counterpart of a question of the
form (2.17) of L?

cpl falls under the schema:

?{A1,♦A1, . . . , An,♦An} (2.26)

rather than under the schema (2.25).

5 For simplicity, we do not consider the multimodal case here.
6 Cf. Ginzburg (1995).
7 Observe that when the underlying modal logic is only K, then A, ♦A and �A

are independent from each other, and similarly for their counterparts involving
negation.
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2.4.3 L?
fom : A first-order language with questions

Now let us take the language of Monadic First-Order Logic with Identity as the
starting point. We designate this language by Lfom . For simplicity, we assume
that the vocabulary of Lfom contains an infinite list of individual constants,
but does not contain function symbols. Well-formed formulas (wffs) of Lfom

are defined in the standard way. By terms of Lfom we mean individual variables
and individual constants of the language. Freedom and bondage of variables
are defined as usual. A sentential function is a wff in which free variables occur;
otherwise a wff is a sentence.

We construct a second language, L?
fom , which has a declarative part and an

erotetic part. The vocabulary of L?
fom consists of the vocabulary of Lfom and

the following signs: ?, {, }, S, U, and the comma.

The declarative part of L?
fom is the language Lfom itself. Declarative well-

formed formulas (d-wffs) of L?
fom are the wffs of Lfom , and similarly for other

concepts introduced above.

As far as the erotetic part of L?
fom is concerned, we have three categories of

questions.

Whether-questions of L?
fom fall into the schema (2.17) specified in section

2.4.1, that is, are of the form:

?{A1, . . . , An}

where n > 1 and A1, . . . , An are nonequiform (i.e. pairwise syntactically dis-
tinct) sentences of L?

fom . Direct answers to questions of the form (2.17) of L?
fom

are defined as above. We adopt analogous notational conventions as in the case
of L?

cpl.

Moreover, L?
fom contains questions falling under the schemata:

?S(Ax) (2.27)

?U(Ax) (2.28)

where x stands for an individual variable and Ax is a sentential function of
L?
fom which has x as the only free variable.

Questions of the form (2.27) can be read:

Which x is such that Ax?

We shall call them existential which-questions.

By a direct answer to an existential which-question ?S(Ax) we mean a
sentence of L?

fom which is an instantiation (by an individual constant) of the
sentential function Ax. Thus direct answers to a question of the form (2.27)
are sentences of the form A(x/c), where c is an individual constant.

Questions having the form of (2.28) can be read:

What are all of the x’s such that Ax?

We call them general which-questions.
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By a direct answer to a general which-question ?U(Ax) we mean a sentence
of L?

fom falling under the schema:

A(x/c1) ∧ . . . ∧A(x/cn) ∧ ∀x(Ax→ x = c1 ∨ . . . ∨ x = cn) (2.29)

where n ≥ 1 and c1, . . . , cn stand for distinct individual constants.

The symbols S and U belong to the vocabulary of the object-level language
L?
fom . However, we can introduce them to the metalanguage as well (but with

different meanings). We can assume that on the metalanguage level S(Ax)
designates the set of all the sentences of the form A(x/c), whereas U(Ax)
designates the set of all the sentences of the form (2.29). Now we are justified
in saying that each question of L?

fom consists of the sign ? followed by an (object-
level language) expression which is equiform to a metalanguage expression that
designates the set of direct answers to the question. In other words, the semi-
reductionistic approach is retained: questions of L?

fom fall under the schema
(2.9) (see page 17).

The expressive power of L?
fom is limited. In particular, only some open-

condition questions (see Chapter 1, section 1.1) are represented by questions of
L?
fom . However, we aim here at an illustration rather than at generality. And

nothing prevents us from taking a richer first-order language (or a higher-order
language) as the point of departure, and from introducing other categories of
wh-questions according to the semi-reductionistic pattern. For possible devel-
opments see Wísniewski (1995), Chapter 3.

2.4.4 L?
`cpl: An erotetic sequent language

Now let us present an example of a language especially designed to tackle with
a certain class of problems, namely logical problems of entailment/derivability,
validity, and inconsistency. For simplicity, we focus on the (classical) proposi-
tional case; when more sophisticated cases are analysed, the construction goes
along similar lines, but is more complex.8

As in section 2.4.1, we take the language Lcpl of CPL as the point of de-
parture, and then we construct a language, L?

`cpl, which has a declarative part

and an erotetic part. However, both d-wffs of L?
`cpl and questions of L?

`cpl are

defined differently than in the case of L?
cpl.

The vocabulary of the language L?
`cpl contains the vocabulary of Lcpl and

the following signs: ?, `, ng (L?
`cpl-negation), & (L?

`cpl-conjunction), as well as
the comma.

Now we introduce the concept of a Lcpl-sequent. By a Lcpl-sequent we mean
an expression of the form:

S ` A (2.30)

where A is a (single!) wff of Lcpl (that is, a CPL-formula), and S is a finite,
possibly empty, sequence of wffs of Lcpl. Let us stress that we consider single-
conclusioned sequents only. This is intended; in what follows we will show why.

8 See Wísniewski et al. (2005), Wísniewski and Shangin (2006), Leszczyńska (2007).
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Clearly, Lcpl-sequents are not expressions of Lcpl. But (assuming that a
sequence of wffs of Lcpl is written down by separating its consecutive elements
with commas, as we do here), a Lcpl-sequent is an expression of L?

`cpl.

Lcpl-sequents perform the role of atomic d-wffs of L?
`cpl. In other words, by

an atomic d-wff of L?
`cpl we mean an expression of L?

`cpl of the form (2.30). We
use Greek lower-case letters, φ, ψ, with subscripts if needed, as metalanguage
variables for atomic d-wffs of L?

`cpl.

Compound d-wffs of L?
`cpl are built from atomic d-wffs by means of & and/or

ng; the construction is standard. Observe that & and ng never occur inside
atomic d-wffs. We adopt the usual conventions concerning omitting parentheses
in d-wffs of L?

`cpl.

Questions of L?
`cpl have the form:

?(Φ) (2.31)

where Φ is a non-empty and finite sequence of atomic d-wffs of L?
`cpl, that

is, of Lcpl-sequents. We say that a question of the form (2.31) is based on the
sequence Φ, and that the terms of this sequence are constituents of the question.

Let Φ = φ1, . . . , φn, and let Q = ?(Φ). The following:

(φ1 & (φ2 & . . . & (φn−1 & φn) . . .)) (2.32)

ng(φ1 & (φ2 & . . . & (φn−1 & φn) . . .)) (2.33)

are the affirmative answer to Q and the negative answer to Q, respectively.
The set of direct answers to a question of L?

`cpl is made up of the affirmative

answer and the negative answer, exclusively. Thus questions of L?
`cpl are, in

principle, polar questions. The general reading of a question would be: “Is it
the case that: φ1 and . . . and φn?”.

The intuitive meaning of a question of L?
`cpl can be described as follows. A

constituent of a question is a Lcpl-sequent. A Lcpl-sequent, S ` A, is CPL-valid
iff A is true under each CPL-valuation under which all the terms of the sequence
S are true; the concept of CPL-valuation is understood in the standard way
(see section 3.1.4 of the next chapter). Thus a question asks about joint validity
of all of its constituents. On the other hand, we may say that a wff A of Lcpl
is CPL-entailed by a sequence of wffs S of Lcpl iff the Lcpl-sequent S ` A is
CPL-valid. Moreover, due to the completeness of CPL, the CPL-validity of a
Lcpl-sequent S ` A is tantamount to CPL-derivability of A from (the set of
terms of) S. Thus a question of the form:

?(S ` A) (2.34)

asks about CPL-entailment (or CPL-derivability) of A by/from S, and a ques-
tion of the form:

?(` A) (2.35)

can read “Is A CPL-valid (is a CPL-thesis)?”. Moreover, a question of the form:

?(S ` p ∧ ¬p) (2.36)
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can be regarded as a question about CPL-consistency of (the set made up of
the terms of) S. When we have a question based on more than one constituent,
it asks about the joint validity of all of its constituents, but gains its specific
meaning depending on the forms of these constituents.
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Elements of Minimal Erotetic Semantics:
Declaratives

In this chapter we introduce semantic concepts pertaining to d-wffs, while
the next chapter presents some semantic concepts pertaining to e-formulas/
questions. In both cases we make use of the conceptual apparatus of Minimal
Erotetic Semantics (hereafter: MiES).

Generally speaking, MiES enables an introduction of some important se-
mantic notions pertaining to questions regardless of whether – and if so, how
– the semantics of questions themselves has been previously elaborated. More-
over, MiES provides a uniform framework for dealing with semantics of “declar-
ative parts” of formal languages with questions. As for the “erotetic parts”,
one makes use of already given assignments of direct answers to questions/e-
formulas, and of semantic concepts pertaining to declaratives.

MiES combines some ideas present in Belnap’s erotetic semantics (cf. Belnap
and Steel (1976)) with certain insights to be found in the book Shoesmith and
Smiley (1978). Of course, MiES also goes beyond them.

3.1 Admissible partitions and entailment

Let L be a formal language in which both d-wffs and e-formulas/questions
occur. First, we make use of the concept of partition of a language. We follow
here the idea of Shoesmith and Smiley (1978), adjusting it a little bit for our
purposes.

Let DL designate the set of d-wffs of L.

Definition 3.1 (Partition of the set of d-wffs). A partition of DL is an or-
dered pair:

P = 〈TP,UP〉

where TP ∩ UP = ∅ and TP ∪ UP = DL.

Intuitively, TP consists of all the d-wffs which are “true” in P, and UP is made
up of all the d-wffs which are “untrue” in P. But “true” is used here as a cover
term which, as we will see, is construed differently in different cases and is



26 3 Elements of Minimal Erotetic Semantics: Declaratives

not synonymous with “true in the actual world”. For brevity, however, it is
convenient to speak about truths and untruths of a partition.

Definition 3.2 (Partition of a language). A partition of L is a partition of
DL.

Note that we have used the term “partition” as pertaining to the set of
d-wffs only. What is “partitioned” is neither the “logical space” nor the set of
e-formulas.

When the sets of questions and d-wffs are disjoint, a question is neither in
TP nor in UP, for any partition P. In general, MiES does not presuppose that
questions are true or false.

The concept of partition introduced above is very general and admits parti-
tions which are rather odd from the intuitive point of view. For example, there
are partitions in which TP is a singleton set, or in which UP is the empty set.
In order to avoid oddity on the one hand, and to reflect some basic facts about
the language just considered on the other, we should distinguish a class of ad-
missible partitions, being a non-empty subclass of the class of all partitions of
the language. This step allows us to define a series of useful semantic concepts,
in particular the concept of entailment.

3.1.1 Entailment

Let X stand for a set of d-wffs of a language L of the considered kind, and let
A be a d-wff of L. Entailment in L, symbolized by |=L, is defined as follows (⊂
is the sign of inclusion):

Definition 3.3 (Entailment). X |=L A iff there is no admissible partition
P = 〈TP,UP〉 of L such that X ⊂ TP and A ∈ UP.

What remains to be done is to characterize the class of admissible partitions.
There are (at least) three methods of doing it: the minimalistic one, the direct
one, and the indirect one.

3.1.2 The minimalistic method

Let us consider a language L of the analysed kind such that the declarative
part of L is the language of a logic `; the d-wffs of L are just the wffs of the
language of `. A logic determines the corresponding consequence relation; it is
a binary relation between sets of wffs on the one hand and individual formulas
on the other. Let `` stand for the consequence relation determined by `. We
assume that `` satisfies the following standard conditions (see Shoesmith and
Smiley (1978)):

(Overlap) If A ∈ X, then X `` A,

(Dilution) If X `` A and X ⊂ Y , then Y `` A,

(Cut for sets) If X ∪ Y `` A and X `` B for every B ∈ Y , then X `` A,
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for any sets X, Y of d-wffs of the language of `, and any d-wffs A, B of the
language.

Assume that `` is not universal. We say that a partition P = 〈TP,UP〉 of L
is improper iff for some set X of d-wffs of L and some d-wff A of L such that
X `` A we have: X ⊂ TP and A ∈ UP; otherwise P is called proper.

Now we have two options. First, the class of admissible partitions of L could
have been identified with the class of all proper partitions of the language. As
a consequence we would get:

Corollary 3.4. `` ⊂ |=L.

Corollary 3.4 yields that all the inferences licensed by ` are L-valid, that is,
their conclusions are entailed in L by the premises. Thus when it comes to
applications, one can make use of the “full strength” of `. However, it is possible
that there are L-valid inferences which are not licensed by ` and, what is worse,
the construction does not determine them.

The second option is to define the class of admissible partitions of L as the
class of proper partitions of the language that fulfils the following condition:

(♥) if X 0` A, then for some partition P = 〈TP,UP〉 in the class:
X ⊂ TP and A ∈ UP

for any set of d-wffs X of L and any d-wff A of the language. We get:

Corollary 3.5. `` = |=L.

Now entailment in L amounts, set-theoretically, to the consequence relation
determined by `. This facilitates possible applications. Let us stress that the
above construction permits that ` is a non-classical logic (but, still, a monotonic
logic).

Comments. The general framework of MiES allows both Classical Logic and
a non-classical logic to serve as the underlying logic of d-wffs. The virtue of the
minimalistic method is its generality (although the method is not applicable in
all cases). However, the relevant concept of truth (of a d-wff in an admissible
partition) is, as a matter of fact, left undetermined conceptually.

3.1.3 The direct method: language L?
`cpl

Atomic d-wffs of language L?
`cpl (cf. section 2.4.4 of Chapter 2) involve the turn-

stile symbol `, intuitively interpreted as referring to CPL-entailment/derivabi-
lity. L?

`cpl is still an object-level language, however. The class of admissible

partitions of L?
`cpl is defined according to the direct method, by imposing some

conditions on partitions of L?
`cpl. These conditions reflect certain basic proper-

ties of CPL-entailment/derivability.

As a preparatory step, we distinguish α-wffs and β-wffs of the initial lan-
guage Lcpl of CPL. The distinction originates from Smullyan (1968). α-wffs are
of the form:
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A ∧B (3.1)

¬(A ∨B) (3.2)

¬(A→ B) (3.3)

whereas β-wffs have the forms:

¬(A ∧B) (3.4)

A ∨B (3.5)

A→ B (3.6)

Contrary to Smullyan, we do not consider ¬¬A as an α-wff. To each α-wff we
assign two wffs: α1, α2, and to each β-wff we assign three wffs: β1, β2, β∗1 . The
assignment is given by Table 3.1.

Table 3.1. α/β formulas.

α α1 α2 β β1 β2 β∗1

A ∧B A B ¬(A ∧B) ¬A ¬B A

¬(A ∨B) ¬A ¬B A ∨B A B ¬A
¬(A→ B) A ¬B A→ B ¬A B A

β∗1 may be called the complement of β1.

Recall that atomic d-wffs of L?
`cpl are of the form S ` A, where A is a wff

of Lcpl and S is a sequence of wffs of Lcpl. The turnstile ` is supposed to
represent CPL-entailment/derivability. It is well-known that an α-wff is CPL-
entailed by a set of CPL-wffs X if, and only if both α1 and α2 are CPL-entailed
by X, and that a β-wff is CPL-entailed by X if, and only if β2 is CPL-entailed
by X enriched with β∗1 . Similarly, CPL-entailment from premises which involve
an α-wff is tantamount to CPL-entailment from the corresponding premises
which involve, instead of α, both α1 and α2. When we have a β-wff among the
premises, a wff is CPL-entailed by these premises just in case the wff is CPL-
entailed both by the premises which involve β1 instead of β and the premises
that involve β2 instead of β. Finally, CPL-entailment of/from ¬¬A amounts to
CPL-entailment of/from A. We make use of these observations when defining
admissible partitions of language L?

`cpl.

In what follows the symbol ′ stands for the concatenation-sign for sequences
of wffs of Lcpl. Thus S ′ T is the concatenation of a sequence of wffs S and a
sequence of wffs T . An expression of the form S ′A represents the concatenation
of S and the one-term sequence whose term is A. Of course, S ′A ′ T is the
concatenation of S ′A and T . We use r, u as metalanguage variables for d-wffs
of L?

`cpl.

Definition 3.6 (Admissible partitions of L?
`cpl). A partition P = 〈TP,UP〉 of

L?
`cpl is admissible iff the following conditions hold:

1. pS ` αq ∈ TP iff pS ` α1q ∈ TP and pS ` α2q ∈ TP;
2. pS ′ T ` βq ∈ TP iff pS ′β∗1

′ T ` β2q ∈ TP;
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3. pS ′ α ′ T ` Cq ∈ TP iff pS ′ α1
′ α2

′ T ` Cq ∈ TP;
4. pS ′ β ′ T ` Cq ∈ TP iff pS ′ β1 ′ T ` Cq ∈ TP and
pS ′ β2 ′ T ` Cq ∈ TP;

5. pS ` ¬¬Aq ∈ TP iff pS ` Aq ∈ TP;
6. pS ′¬¬A ′ T ` Bq ∈ TP iff pS ′A ′ T ` Bq ∈ TP;
7. pr & uq ∈ TP iff r ∈ TP and u ∈ TP;
8. if u /∈ TP, then png uq ∈ TP;
9. if u ∈ TP, then png uq /∈ TP.

Entailment in L?
`cpl can be defined according to the schema presented by

Definition 3.3. In particular, a d-wff u is entailed by a d-wff r iff there is no
admissible partition P = 〈TP,UP〉 of L?

`cpl such that r ∈ TP and u ∈ UP.

Let us stress that entailment in L?
`cpl should not be confused with the

relation represented by `. Entailment in L?
`cpl is a relation between d-wffs of

L?
`cpl, defined in the metalanguage of L?

`cpl. The turnstile, `, is the sign of the

object-level language L?
`cpl and refers to entailment/derivability in the initial

language Lcpl of CPL. So a statement of the form:

pS ` Aq |=L?
`cpl
pT ` Bq

claims that CPL-entailment/derivability among S and A yields CPL-entailment
/derivability between T and B, and similarly in more complex cases.

Consider the following questions:

?(p→ q ` ¬q → ¬p) (3.7)

?(¬p,¬q ` ¬p ; q,¬q ` ¬p) (3.8)

The affirmative answers to the above questions entail each other in L?
`cpl, and

similarly for the negative answers. Thus (3.7) and (3.8) are, in a sense, equiv-
alent. Hence the problem of CPL-validity of:

p→ q ` ¬q → ¬p

reduces to the problem of joint CPL-validity of sequent ¬p,¬q ` ¬p and sequent
q,¬q ` ¬p. We will come back to this issue in Chapter 8.

3.1.4 The indirect method: language L?
cpl

Generally speaking, the indirect method applies a full-fledged semantics of the
declarative part of a language as the basis.

Language L?
cpl results from the language Lcpl of CPL by enriching Lcpl

with questions (see section 2.4.1 of Chapter 2 for details). The language of
CPL, however, has well-defined semantics. We take the standard one and we
introduce, first, the concept of CPL-valuation.

Let 1 and 0 stand for Truth and Falsehood, respectively. Recall that the
set DL?

cpl
is the set of wffs of Lcpl (i.e. of CPL-formulas). A CPL-valuation is a

function v : DL?
cpl
7→ {1,0} such that:
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• for each propositional variable p, either v(p) = 1 or v(p) = 0;
• v(¬A) = 1 iff v(A) = 0;
• v(A ∧B) = 1 iff v(A) = v(B) = 1;
• v(A ∨B) = 1 iff v(A) = 1 or v(B) = 1;
• v(A→ B) = 1 iff v(A) = 0 or v(B) = 1.

Definition 3.7 (Admissible partitions of L?
cpl). A partition P = 〈TP,UP〉 of

L?
cpl is admissible iff for some CPL-valuation v:

• TP = {A ∈ DL?
cpl

: v(A) = 1}, and

• UP = {B ∈ DL?
cpl

: v(B) = 0}.

Thus the set of “truths” of an admissible partition equals the set of d-wffs
which are true under the corresponding CPL-valuation.

Observe that all the usual semantic properties are retained, but now they
can be rephrased in terms of admissible partitions. For example, there is no
admissible partition P of L?

cpl such that both A and ¬A belong to TP. Moreover,
A ∧ B belongs to TP if, and only if A is in TP and B is in TP, and analogous
classical clauses hold for other connectives.

Note finally that entailment in L?
cpl reduces to CPL-entailment. The following

is true:

Corollary 3.8. X |=L?
cpl

A iff there is no CPL-valuation v such that v(B) = 1

for all B ∈ X, and v(A) = 0.

3.1.5 The indirect method: language L?
S4

Let us now turn to modal propositional languages with questions characterized
in section 2.4.2 of Chapter 2. As an illustration, we consider the case of the
(propositional) modal logic S4 and the corresponding language L?

S4.

The set DL?
S4

of d-wffs of L?
S4 equals the set DLS4

of wffs of the language LS4

of S4.

We start by using a semantics of S4. Since the logic has a standard relational
semantics, we apply it to the d-wffs of L?

S4. However, we are interested in truth
in a world rather than in truth in a model.

A S4-model is an ordered triple:

〈W,R, V 〉 (3.9)

where W 6= ∅, R ⊂W ×W is both reflexive and transitive in W , and
V : DLS4

×W 7→ {1,0} satisfies the following conditions, for any w ∈W :

• for each propositional variable p, either V (p, w) = 1 or V (p, w) = 0;
• V (¬A,w) = 1 iff V (A,w) = 0;
• V (A ∧B,w) = 1 iff V (A,w) = V (B,w) = 1;
• V (A ∨B,w) = 1 iff V (A,w) = 1 or V (B,w) = 1;
• V (A→ B,w) = 1 iff V (A,w) = 0 or V (B,w) = 1;
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• V (♦A,w) = 1 iff for some w∗ ∈ R→w : V (A,w∗) = 1;
• V (�A,w) = 1 iff for each w∗ ∈ R→w : V (A,w∗) = 1.

As usual, elements of W are called (possible) worlds, and R is the accessibility
relation. Let M = 〈W,R, V 〉 be a S4-model. Truth of a d-wff A in a world w
of model M , in symbols (M , w) |= A, is defined by:

(M , w) |= A iff V (A,w) = 1 (3.10)

Admissible partitions of L?
S4 are defined as follows:

Definition 3.9 (Admissible partitions of L?
S4). A partition P = 〈TP,UP〉 of

L?
S4 is admissible iff for some S4-model M = 〈W,R, V 〉 and for some w ∈W :

• TP = {A ∈ DL?
S4

: (M, w) |= A}, and

• UP = {B ∈ DL?
S4

: (M, w) 6|= B}.

Thus the set of “truths” of an admissible partition consists of all the d-wffs
which are true in the corresponding world of a given model.

Note that the theses of S4 are always included in TP, for any admissible
partition P of the language. This is how it should be. Moreover, the following
holds:

Corollary 3.10.

X |=L?
S4
A iff there is no S4-model M = 〈W,R, V 〉 such that for some w ∈ W :

(M, w) |= B for each B ∈ X, and (M, w) 6|= A.

Thus entailment in L?
S4 reduces to the so-called local entailment in S4.1

We have considered above the case of S4. As long as other normal propo-
sitional modal logics are concerned, one can proceed analogously; the only
difference lies in conditions to be imposed on the accessibility relation. When
non-normal modal logics constitute the background, the concept of model (usu-
ally) gets more complicated.

Remark. The above construction relies on the assumption that the declara-
tive part of a language is the language of a fixed modal logic. On the other
hand, it happens that languages of distinct modal logics are syntactically in-
distinguishable. However, they are still distinct languages, since the meanings
of modalities depend on the underlying logics. This should be, and in fact is
reflected at the level of MiES.

3.1.6 The indirect method: language L?
fom

The declarative part of L?
fom is the language of Monadic First-Order Logic with

Identity (and no function symbols). We use the model-theoretical semantics as
the point of departure. By a model of L?

fom we mean an ordered pair 〈M,f〉
such that M is a non-empty set, and f is a function which assigns an element

1 If, for some reasons, one would need reduction to global entailment, admissible
partitions are to be defined in terms of truth in a model.
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of M to each individual constant of L?
fom , and a subset of M to each unary

predicate of L?
fom .

Let M = 〈M,f〉 be a model of L?
fom . A M-valuation is a denumerable se-

quence of elements of M . The concepts of value of a term under aM-valuation,
and of satisfaction of a d-wff by a M-valuation are defined in the standard
manner. A wff A is true in a model M = 〈M,f〉, in symbols M |= A, iff A is
satisfied by each M-valuation.

In the second step we define the class of normal models. Roughly, a model
M = 〈M,f〉 of L?

fom is normal just in case all the elements of M are named by

individual constants of L?
fom . To be more precise, by a normal model of L?

fom

we mean a model M = 〈M,f〉 of the language such that for each y ∈ M we
have: y = f(ci) for some individual constant ci of L?

fom .

As long as normal models are concerned, the truth of an existential general-
ization ∃xAx warrants the existence of a true direct answer to the correspond-
ing existential which-question ?S(Ax). This is why we have distinguished these
models here.

Definition 3.11 (Admissible partitions of L?
fom). A partition P = 〈TP,UP〉

of L?
fom is admissible iff for some normal model M = 〈M,f〉 of L?

fom:

• TP = {A ∈ DL?
fom

:M |= A}, and

• UP = {B ∈ DL?
fom

:M 6|= B}.

Hence the set of “truths” of an admissible partition equals the set of d-wffs
which are true in the corresponding normal model.

One can prove the following:2

Corollary 3.12. Let X be a finite set of d-wffs of L?
fom. X |=L?

fom
A iff A is

true in each model of L?
fom in which all the d-wffs in X are true.

Thus in the case of finite sets of d-wffs, entailment in L?
fom reduces to logical

entailment. The situation changes, however, when infinite sets of d-wffs are
taken into consideration.

Remark. The reference to normal models is the key feature of the above con-
struction. We have distinguished them for “erotetic” reasons. However, when
we deal with a first-order (or a higher-order) language enriched with questions,
normal models can be distinguished for many reasons and in different manners.
For example, one can define them as models of a theory expressed in the declar-
ative part of the language3, or as models which make true some definition(s).
It is also permitted to consider all models as normal. Each decision determines
the corresponding entailment relation.

2 For a proof, see e.g. Wísniewski (1995), p. 125.
3 That is, models of the language in which all the theorems are true.
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3.2 Multiple-conclusion entailment

It is natural to think of questions which have well-defined sets of direct answers
as offering sets of “possibilities” or “alternatives”, among which some selection
or choice is requested to be made. And when we are going to analyse relations
between questions and contexts of their appearance, some notion of, to speak
generally, “entailing a set of possibilities” is needed. There is a logic, however,
within which such notion is elaborated on: it is multiple-conclusion logic (see
Shoesmith and Smiley (1978)). This logic generalizes the concept of entailment,
regarding it as a relation between sets of declarative formulas (d-wffs). The
entailed set is conceived as, intuitively speaking, setting out the field within
which the truth must lie if the premises are all true.

Let L be a language of the kind considered above, and let X and Y be
sets of d-wffs of L. The relation ||=L of multiple-conclusion entailment in L is
defined as follows:

Definition 3.13 (Multiple-conclusion entailment). X ||=L Y iff there is no
admissible partition P = 〈TP,UP〉 of L such that X ⊂ TP and Y ⊂ UP.

Thus X multiple-conclusion entails (mc-entails for short) Y if, and only if
there is no admissible partition in which X consists of truths and Y consists of
untruths. In other words, mc-entailment between X and Y holds just in case
the truth of all the d-wffs in X warrants the presence of some true d-wff(s) in
Y : whenever all the d-wffs in X are true in an admissible partition P, then at
least one d-wffs in Y is true in the partition P.

Here are simple examples:

{p ∨ q} ||=L?
cpl
{p, q} (3.11)

{p ∧ q → r,¬r} ||=L?
cpl
{¬p,¬q} (3.12)

{∃xPx} ||=L?
fom

S(Px) (3.13)

where P is an unary predicate of L?
fom ;4

{¬∀xPx} |=L?
fom

S(¬Px) (3.14)

{∃xPx,¬Pa} ||=L?
fom

S(Px) \ {Pa} (3.15)

where a is an individual constant.

{♦p,♦¬p} ||=L?
S4
{p,¬p} (3.16)

{�(p→ q),♦¬q} ||=L?
S4
{♦q,�¬p} (3.17)

{¬�p} ||=L?
S4
{�¬�p,♦�p} (3.18)

4 Recall that S(Px) is the set of sentences of L?
fom of the form Pc, where c stands for

an individual constant.
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3.2.1 Multiple-conclusion entailment vs. single-conclusion
entailment

Definition 3.13 offers a non-trivial generalization of the concept of entailment.
Observe that in neither of the above cases (3.11) – (3.18) a single element of
the mc-entailed set is entailed, in the sense of Definition 3.3, by the premises.
So mc-entailment cannot be defined in terms of (single-conclusion) entailment
only. Intuitively speaking, mc-entailment between X and Y amounts to (single-
conclusion) entailment of a “disjunction” of all the Y ’s from a “conjunction”
of all the X’s. However, we cannot use this idea as a basis for a definition of
mc-entailment. There are languages of the considered kind in which disjunction
does not occur (for example, language L?

`cpl) or is understood differently than in
Classical Logic. Moreover, Y can be an infinite set and an infinite “disjunction”
need not be expressible in a language (similarly for X and conjunction).

Single-conclusion entailment, however, can be conceived as a special case of
mc-entailment. The following holds:

Corollary 3.14. X |=L A iff X ||=L {A}.

Thus one can define entailment as mc-entailment of a singleton set.

For conciseness, we will write A ||=L Y instead of {A} ||=L Y , and X ||=L A
instead of X ||=L {A}. If {A} ||=L Y , we also say that Y is mc-entailed by the
d-wff A.

The concept of mc-entailment proved its usefulness in the logic of questions
in many ways.5 It will serve as one of the main conceptual tools used in the
next sections of this chapter, and in consecutive chapters.

3.3 Eliminating and narrowing down

Although classical negation occurs in any of the languages considered above,
this is not a general rule. For this reason we need a technical (semantic) concept
of elimination. We put:

Definition 3.15 (Elimination). Let B,C be d-wffs of L, and let X,Y be sets
of d-wffs of L.

1. X eliminates Y iff for each admissible partition P = 〈TP,UP〉 of L:
(◦) if X ⊂ TP, then Y ⊂ UP;

2. X eliminates C iff X eliminates {C};
3. B eliminates Y iff {B} eliminates Y ;
4. B eliminates C iff {B} eliminates {C}.

Thus C is eliminated by B if C is false in each admissible partition in which B
is true, and similarly in the remaining cases.

For single d-wffs elimination is symmetric. One can easily prove:

Corollary 3.16. If B eliminates C, then C eliminates B.

5 Starting from Buszkowski (1989) as well as Wísniewski (1989).
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Clearly eliminating is weaker than contradicting: it happens that B elimi-
nates C, and both B and C are false in an admissible partition. For example,
take language L?

cpl and the following d-wffs of the language:

p ∧ q (3.19)

p ∧ ¬q (3.20)

(3.19) eliminates (3.20), but (3.19) and (3.20) are false in any (admissible)
partition of L?

cpl in which p is false.

Definition 3.17 (Narrowing down). A set of d-wffs X of L narrows down a
set of d-wffs Y of L iff there exists a non-empty proper subset Y ∗ of Y such
that X ||=L Y ∗.

The underlying intuition is: a disjunction of some, but not all elements of Y
(that is, a disjunction whose disjuncts do not exhaust the whole Y ) is entailed
by X. The disjunction can be infinite, but “classical” in the sense that it is
true in an admissible partition just in case at least one disjunct is true in the
partition.

Narrowing down is not tantamount to elimination. For instance, let X =
{p, p→ q ∨ r} and Y = {q, r, t}. Clearly, X mc-entails the proper subset {q, r}
of Y , but does not eliminate any d-wff in Y . Similarly, elimination need not
yield narrowing down. For example, ¬q eliminates the d-wff q of Y , but does
not mc-entail any proper subset of Y .





4

Elements of Minimal Erotetic Semantics:
Questions

In this chapter we introduce some semantic concepts pertaining to questions.
We do it within the MiES framework.

From now on, we will be considering (unless otherwise stated) an arbitrary
but fixed formal language L of the analysed kind; by d-wffs and questions we
will mean d-wffs and questions of the language. Language L is supposed to sat-
isfy the following conditions: (a) it has questions and d-wffs among well-formed
expressions, (b) for any question of the language, the set of direct answers to
the question is defined, (c) direct answers are d-wffs, and (d) the class of ad-
missible partitions of L is defined. For the sake of brevity, in what follows we
omit the specifications “of L” and “in L”. Similarly, we write |= instead of |=L,
and ||= instead of ||=L.

We use dQ for the set of all the direct answers to question Q.

We say that a d-wff A is true in a partition P = 〈TP,UP〉 if A ∈ TP, and
false in P if A ∈ UP.

4.1 Soundness of a question

MiES does not presuppose that questions are true or false. Instead, the concept
of soundness of a question is used.

The underlying intuition is: a question Q is sound if, and only if at least
one direct answer to Q is true.1 So, for example, the question “Who was the
only wife of Henry the Eight?” is not sound, whereas “Who was the first wife
of Henry the Eight?” is sound. Similarly, the question “For which x ∈ N,
x = 2÷ 0 ?” is not sound, while “For which x ∈ N, x = 2÷ 1 ?” is sound.

Of course, when a formal language is concerned, the concept of soundness
needs a relativization. So we put:

Definition 4.1 (Soundness). A question Q is sound in a partition P iff dQ ∩
TP 6= ∅.
1 The basic idea of this definition is due to Bromberger; see Bromberger (1992), p.

146.
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Thus a question is sound in a partition iff at least one direct answer to
the question is true in the partition. In practice, we relativize the concept
of soundness even further: we are interested in soundness in an admissible
partition.

4.2 Safety and riskiness

It may happen that a question is sound in one admissible partition and is not
sound in some other(s). If, however, a question is sound in each admissible
partition of a language, we call it a safe question.2 More formally:

Definition 4.2 (Safety). A question Q is safe iff dQ ∩ TP 6= ∅ for each ad-
missible partition P.

Observe that a question can be safe although no direct answer to it is valid, that
is, true in each admissible partition of a language. For example, the following
questions of L?

cpl are safe, but no direct answer to them is valid:

?p (4.1)

?± |p, q| (4.2)

However, we still have:3

Corollary 4.3. A question Q is safe iff ∅ ||= dQ.

A question which is not safe is called risky.4 To be more precise:

Definition 4.4 (Riskiness). A question Q is risky iff dQ ∩ TP = ∅ for some
admissible partition P.

Thus a risky question is a question which has no true direct answer in at least
one admissible partition of the language. Here are simple examples of risky
questions of the language L?

cpl:

?{p, q} (4.3)

?{p ∧ q, p ∧ ¬q} (4.4)

The following questions of L?
S4 are risky:

?{�p,�¬p} (4.5)

?{�♦p,♦�p} (4.6)

Definition 4.5 (Contingency). A question Q is contingent iff there exist ad-
missible partitions P, P∗ such that dQ ∩ TP 6= ∅ and dQ ∩ TP∗ = ∅.

2 This idea, in turn, comes from Belnap. See e.g. Belnap and Steel (1976), p. 130.
3 Recall that Y can be mc-entailed by X although no element of Y is entailed by X;

cf. section 3.2.1 of Chapter 3.
4 Again, this is Belnap’s term.
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Thus contingent questions form a sub-class of risky questions: a question is
contingent just in case it is sound in some, but not all admissible partitions. For
instance, questions (4.3), (4.4), (4.5) and (4.6) are contingent. The following
question of L?

cpl:
?{p ∧ ¬p,¬(p ∨ ¬p)} (4.7)

is not contingent.

Corollary 4.6. A question Q is contingent iff ∅ |6|= dQ, but ∅ does not elimi-
nate dQ.

A language of the considered kind usually involves both safe and risky
questions. There are exceptions, however. For instance, each question of the
language L?

`cpl is safe. This is due to clause (8 ) of Definition 3.6 of admissible

partitions of L?
`cpl.

4.3 Presuppositions and prospective presuppositions

Following Belnap’s proposal5, we define the concept of a presupposition of a
question by:

Definition 4.7 (Presupposition). A d-wff B is a presupposition of a question
Q iff A |= B for each A ∈ dQ.

Thus a presupposition of a question is a d-wff which is entailed by each direct
answer to the question. For instance, the following:

p ∨ q (4.8)

is an example of a presupposition of question (4.3). Here are examples of pre-
suppositions of question (4.4):

(p ∧ q) ∨ (p ∧ ¬q) (4.9)

p ∧ (q ∨ ¬q) (4.10)

q ∨ ¬q (4.11)

p (4.12)

Let P be an arbitrary but fixed admissible partition. Observe that if a
question is sound in P, then each presupposition of the question is true in
P. On the other hand, the truth of a presupposition of a question need not
warrant the soundness of the question. For instance, r is a presupposition of
the following question of L?

cpl:

?{p ∧ r, q ∧ r} (4.13)

but the question is not sound in an admissible partition in which r is true and
both p and q are not true.

A presupposition whose truth warrants soundness of the question is called
a prospective presupposition.

5 See e.g. Belnap and Steel (1976), pp. 119-120. Belnap expresses this definition
differently, however.
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Definition 4.8 (Prospective presupposition). A presupposition B of a ques-
tion Q is prospective iff B ||= dQ.

A prospective presupposition is thus a presupposition that mc-entails the set of
direct answers to the question. In other words, a prospective presupposition is
a presupposition whose truth is both necessary and sufficient for the soundness
of the question.

For example, the following d-wff:

r ∧ (p ∨ q) (4.14)

is a prospective presupposition of question (4.13), whereas the d-wff p is a
prospective presupposition of the question:

?{p ∧ q, p ∧ ¬q} (4.4)

Note that these are not the only prospective presuppositions of the analysed
questions. For instance, (4.9) and (4.10) (but not (4.11)!) are also prospective
presuppositions of question (4.4), while the set of prospective presupposition
of question (4.13) includes, int. al., the d-wff:

(p ∧ r) ∨ (q ∧ r) (4.15)

In general, a prospective presupposition of a question of the form:

?{A1, . . . , An}

(of L?
cpl or L?

fom) is either a d-wff of the form:

A1 ∨ . . . ∨An (4.16)

or a d-wff which is equivalent to it (by “equivalence” we mean here mutual
entailment in a language). One can show that the existential generalization:

∃xAx (4.17)

is a prospective presupposition of the corresponding existential which-question:

?S(Ax)

of L?
fom (recall that admissible partitions of L?

fom are determined by models, in
which each individual has a name). The remaining prospective presuppositions
of ?S(Ax) are equivalent to (4.17).

We do not claim, however, that each question of any language of the con-
sidered kind has prospective presupposition(s). On the contrary, there are lan-
guages which involve questions that lack prospective presuppositions. For ex-
ample, when we have a general which-question of L?

fom of the form:

?U(Px)

where P represents an unary predicate, the existential generalization ∃xPx
is the strongest presupposition of the question, but is still not a prospective
presupposition.
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Notation. The set of presuppositions of a question Q will be referred to as
PresQ, whereas the set of prospective presuppositions of Q will be designated
by PPresQ.

4.4 Normal questions and regular questions

The soundness of a question yields that each presupposition of the question,
if there is any6, is true. Yet, the converse need not hold. If it (non-vacuously)
holds, the question is called normal. When there is a single presupposition
whose truth warrants the soundness of a question, the question is called regular.

Normal question can be formally defined as follows.

Definition 4.9 (Normal question). A question Q is normal iff PresQ 6= ∅
and PresQ ||= dQ.

The condition PresQ 6= ∅ is dispensable if the intersection of the sets of “truths”
of all the admissible partitions of a language is non-empty.

Regularity is a special case of normality.

Definition 4.10 (Regular question). A question Q is regular iff there exists
B ∈ PresQ such that B ||= dQ.

Contrary to appearance, these concepts are not equivalent. Since mc-en-
tailment need not be compact (recall that we consider here an arbitrary lan-
guage from a class of formal languages!), normality is not tantamount to reg-
ularity. The basic intuition which underlies the concept of regularity is: there
exists a single presupposition of a question whose truth guarantees the existence
of a true direct answer to the question. We have:

Corollary 4.11. A question Q is regular iff PPresQ 6= ∅.

Remark. Regularity and normality are semantic concepts. One cannot say
that a question (syntactically construed) is normal/regular in an “absolute”
sense. For instance, existential which-questions are normal (and regular) in
L?
fom , but would cease to be normal when admissible partitions were determined

by all models of the language. If we enriched L?
fom with a quantifier “there exist

finitely many”, general which-questions would become regular (provided that
admissible partitions were defined as before).

4.5 Self-rhetorical questions and proper questions

The next concept needed is self-rhetoricity.

Definition 4.12 (Self-rhetorical question). A question Q is self-rhetorical iff
PresQ |= A for some A ∈ dQ.

6 Presuppositions are d-wffs. One can imagine a language of the considered kind in
which there are no d-wffs entailed by each direct answer to a certain question and
therefore its set of presuppositions is empty.
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Observe that questions can be self-rhetorical for diverse reasons. If a ques-
tion has a valid (i.e. true in each admissible partition of the language) d-wff
among its direct answers, it is self-rhetorical. If all the direct answers to a
question are equivalent and hence the “choice” offered by the question is only
apparent, the question is self-rhetorical as well. A much weaker condition is
also sufficient for self-rhetoricity: there is a direct answer which is entailed by
all the other direct answers. If this is the case, the sets of direct answers and of
presuppositions are not disjoint. Here is an example taken from the language
L?
cpl:

?{p, q, p ∨ q} (4.18)

Again, self-rhetoricity is not an “absolute” property. For instance, the fol-
lowing:

?{�p,��p} (4.19)

is a self-rhetorical question of L?
S4, but ceases to be self-rhetorical when the

underlying modal logic of d-wffs is weaker than K4.7

Finally, we introduce the concept of proper question.

Definition 4.13 (Proper question). A question Q is proper iff Q is normal,
but not self-rhetorical.

Generally speaking, a question is proper just in case the truth of all its pre-
suppositions warrants the existence of a true direct answer to it, but does not
warrant the truth of any particular direct answer to the question.

4.6 Relative soundness

Let us now introduce:

Definition 4.14 (Relative soundness). We say that a question Q is sound
relative to a set of d-wffs X iff X ||= dQ.

Thus Q is sound relative to X if, and only if Q has a true direct answer in
every admissible partition of the language in which all the d-wffs in X are true.
In other words, it is impossible that all the d-wffs in X are true, but no direct
answer to Q is true: if only X consists of truths, Q must be sound.

A warning is in order. One should not confuse relative soundness with sound-
ness in a partition. Relative soundness is a relation between a question and a
set of d-wffs. Soundness in a partition is a property which a question has or
does not have.

One can easily prove:

Corollary 4.15. A question Q is safe iff Q is sound relative to the empty set.

Corollary 4.16. A question Q is normal iff PresQ 6= ∅ and Q is sound relative
to PresQ.

7 To be more precise, when �p→ ��p is not a thesis of the logic.
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4.7 Types of answers

So far we have operated with only one category of answers, that is, direct
answers. However, the conceptual apparatus of MiES allows us to define further
types of answers. We will restrict ourselves to categories which are most useful
for our further considerations.

4.7.1 Just-complete answers

We start with just-complete answers. The following definition introduces a
concept that is not superfluous when direct answers are defined syntactically.

Definition 4.17 (Just-complete answer). A d-wff C is a just-complete an-
swer to a question Q iff C /∈ dQ, and for some A ∈ dQ, both C |= A and
A |= C hold.

Roughly, just-complete answers are equivalent to direct answers, but are
not direct answers. By equivalence we mean mutual entailment.

It is convenient to introduce the following notational convention:

[dQ] = {C: for some A ∈ dQ, C |= A and A |= C}

The set [dQ] comprises the direct answers to Q and the just-complete answers
to Q.

4.7.2 Partial answers

Partial answers are defined by:

Definition 4.18 (Partial answer). A d-wff B is a partial answer to a question
Q iff B /∈ [dQ], but for some non-empty proper subset Y of dQ:

1. B ||= Y , and
2. for each A ∈ Y : A |= B.

A partial answer is a d-wff that is neither a direct answer nor a just-complete
answer, but which is true if, and only if a true direct answer belongs to some
specified proper subset of the set of all the direct answers to the question. In
other words, a partial answer to Q is a d-wff which narrows down (in the sense
of Definition 3.17) the set of direct answers to Q. Recall that narrowing down
is not tantamount to elimination.

Examples of partial answers will be given in section 4.7.3 below.

Note that a binary question, that is, a question which has only two direct
answers, has no partial answer (understood in the sense of the above definition).
However, binary questions, as well as other questions, still have answers which
are neither direct answers nor just-complete answers.
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4.7.3 Eliminative answers

Generally speaking, an eliminative answer, if true, eliminates at least one of
the “possibilities” offered by a question. More formally:

Definition 4.19 (Eliminative answer). A d-wff B is an eliminative answer
to a question Q iff

1. B /∈ [dQ], and
2. B ∈ TP for some admissible partition P, and
3. there exists A ∈ dQ such that B eliminates A.

The concept of elimination is understood here in the sense of Definition 3.15.
When the classical negation8 occurs in a language, an eliminative answer can
also be defined as a consistent d-wff which entails the negation of at least
one direct answer, but is not equivalent to any direct answer. However, there
are languages of the considered kind in which negation does not occur or is
understood non-classically, and for this reason we have formulated the definition
in the current form.9

Eliminative answers vs. partial answers. There are eliminative answers
which are not partial answers, and there are partial answers which are not
eliminative. For consider the following question of L?

cpl:

?{p, q, r} (4.20)

The d-wff:
p ∨ q (4.21)

is a partial answer to question (4.20), but is not an eliminative answer to the
question. The d-wff:

¬r (4.22)

is an eliminative answer to question (4.20), but is not a partial answer to it. So
one cannot identify partial answers with eliminative answers. These categories
are not disjoint, however. For example, in the case of question (4.2) of L?

cpl:

?± |p, q|

each of the d-wffs p, ¬p, q, ¬q is both a partial answer and an eliminative
answer to the question.

8 More generally, a negation for which a counterpart of the “law of contradiction”
holds.

9 Observe that if clause (2) had been dropped, each “inconsistent” (i.e. false in any
admissible partition) d-wff would have been an eliminative answer to a question
that has no inconsistent d-wff among its direct answers. Still, any contingent d-wff
not equivalent to a direct answer is an eliminative answer to a question which has
inconsistent d-wff(s) among its direct answers. We take this for granted.
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4.7.4 Corrective answers

Roughly, a corrective answer is a consistent d-wff which eliminates (in the sense
of Definition 3.15) the set of direct answers. We express this intuition by:

Definition 4.20 (Corrective answer). A d-wff B is a corrective answer to a
question Q iff

1. B ∈ TP for some admissible partition P, and
2. B eliminates dQ.

Thus if a corrective answer is true in an admissible partition, no direct
answer is true in the partition.

If the classical negation occurs in a language considered and PresQ 6= ∅,
clause (2) of Definition 4.20 can be replaced with “B entails the negation of a
presupposition of Q”.

Clearly, each corrective answer is an eliminative answer. On the other hand,
there are eliminative answers that are not corrective in the sense of Definition
4.20. As an illustration, let us consider the following question of L?

cpl:

?{p ∧ q, p ∧ r} (4.23)

The d-wffs ¬q and ¬r are eliminative answers to question (4.23), but are not
corrective answers to the question. Here are examples of corrective answers to
question (4.23):

¬p (4.24)

¬(q ∨ r) (4.25)

One can easily show that the set of partial answers to a question and the
set of corrective answers to the question are disjoint.

4.8 The applicability issue

Providing an adequate semantic analysis of NLQ’s is a difficult task. It is not
by accident that theories of questions are still diverse.

However, Minimal Erotetic Semantics is, in a sense, neutral here. If only
NLQ’s are represented/formalized by e-formulas, some assignment of sentential
ppa’s to e-formulas is given (regardless of how ppa’s are conceptualized in detail
– in our case as direct answers – and how the assignment is determined/defined:
syntactically, semantically, or both), and the class of admissible partitions of the
relevant formal language is determined, the “erotetic” concepts defined within
MiES become applicable. To be more precise, they are directly applicable to e-
formulas with well-defined/determined sets of ppa’s, and indirectly – to NLQ’s
represented by them.

Moreover, it is irrelevant whether e-formulas/questions have been intro-
duced into a formal language according to the “define within” method or the
“enrich with” method. In the former case the “original” semantic concepts per-
taining to other formulas apply to e-formulas as well. But nothing prevents
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us from using, in addition, a new collection of concepts, the MiES-concepts.
They would constitute the “second collection” of semantic concepts pertain-
ing directly to e-formulas and indirectly to NLQ’s. The situation is analogous
when e-formulas are defined syntactically, but their semantic analysis is also
provided. If, however, questions of a formal language are defined only syntac-
tically, then, assuming that some assignment of ppa’s to questions/e-formulas
is given, MiES shows how to deal with questions at the semantic level without
providing a semantics for questions themselves.

Further readings. For the reasons of space, we did not present here all the
erotetic concepts already defined within MiES. Similarly, we skipped most of
the corollaries characterizing relations between concepts. More information on
MiES can be found in Wísniewski (1996) and Wísniewski (2001). A model-
-theoretic variant of MiES is presented in Wísniewski (1997a), and in Chapter
4 of the book Wísniewski (1995). Recently Michal Pelǐs in Pelǐs (2011) proposed
an account of MiES based on the notion of model as the basic one. His account
includes definitions of some new concepts as well as simplifications of definitions
of certain old concepts.
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Inferential Erotetic Logic: An Introduction

By and large, Inferential Erotetic Logic (IEL for short) is a logic that analyses
inferences in which questions perform the role of conclusions, and proposes
criteria of validity for these inferences. The idea of IEL originates from late
1980s, but IEL was developed in depth in the 1990s1 as an alternative to the
received view in the logic of questions, which situated the answerhood problem
in the center of attention, and to the Interrogative Model of Inquiry, elaborated
by Jaakko Hintikka.

5.1 Erotetic inferences

IEL starts with a trivial observation that before a question is asked or posed,
a questioner must arrive at it. In many cases arriving at questions resembles
coming to conclusions: there are premises involved and some inferential thought
processes take place. If we admit that a conclusion need not be “conclusive”,
we can say that sometimes questions play the role of conclusions. But questions
can also perform the role of premises: it often happens that an agent arrives at a
question when looking for an answer to another question. Thus the concept of an
erotetic inference is introduced. As a first approximation an erotetic inference
may be defined as a thought process in which one arrives at a question on the
basis of some previously accepted declarative sentence or sentences and/or a
previously posed question. There are erotetic inferences of (at least) two kinds:
the key difference between them lies in the type of premises involved. In the case
of erotetic inferences of the first kind the set of premises consists of declarative
sentence(s) only, and an agent passes from it to a question. For example:

Andrew always comes in time, but now he is late.

What has happened to him?

1 Cf. Wísniewski (1986), Wísniewski (1989), Wísniewski (1990a), Wísniewski
(1990b), Wísniewski (1991), Wísniewski (1994a), Wísniewski (1995), Wísniewski
(1996), Wísniewski (2001).
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The premises of an erotetic inference of the second kind consist of a question
and possibly some declarative sentence(s). For instance:

Where did Andrew leave for?
If Andrew took his famous umbrella, then he left for London;
otherwise he left for Paris or Moscow.

Did Andrew take his famous umbrella?

Erotetic inferences in which no declarative premise occurs can be regarded as a
special case of erotetic inferences of the second kind. Here is an example of an
appropriate erotetic inference which does not rely on any declarative premise:

Is Andrew silly and ugly?

Is Andrew ugly?

An inference, even erotetic, is always someone’s inference. In its general
setting, however, IEL abstracts from this: erotetic inferences are construed
syntactically. Erotetic inferences of the first kind are viewed as ordered pairs
〈X,Q〉, where X is a finite and non-empty set of declarative sentences and Q is a
question. Similarly, an erotetic inference of the second kind is identified with an
ordered triple 〈Q,X,Q1〉, where Q, Q1 are questions and X is a finite (possibly
empty) set of declarative sentences. When formal languages with questions are
dealt with, X is a set of declarative well-formed formulas. Erotetic inferences
construed syntactically are also called erotetic arguments.

5.2 Validity of erotetic inferences

IEL proposes some conditions of validity of erotetic inferences.

As long as we are concerned with inferences which have only declaratives
as premises and conclusions, validity amounts to the transmission of truth: if
the premises are all true, the conclusion must be true as well. However, it is
doubtful whether it makes any sense to assign truth or falsity to questions and
thus one cannot apply the above concept of validity to erotetic inferences. But
in the case of questions the concept of soundness seems to play an equally
important role as the concept of truth in the realm of declaratives. Recall that
a question Q is sound if at least one direct answer to Q is true, and unsound
otherwise.

There are erotetic inferences of (at least) two kinds, and the conditions of
validity are distinct for each kind.

5.2.1 Validity of erotetic inferences of the first kind

An erotetic inference of the first kind is conceived as an ordered pair 〈X,Q〉,
where X is a finite and non-empty set of declarative sentences/d-wffs, and Q
is a question. The elements of X are the premises, and Q is the conclusion.
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It seems natural to impose the following necessary condition of validity on
erotetic inferences of the first kind:

(C1) (transmission of truth into soundness). If the premises are all
true, then the question which is the conclusion must be sound.

Is this sufficient? Certainly not. For if (C1) were sufficient, the following infer-
ences would be valid:

Andrew is rich.
Andrew is happy.

Is Andrew happy?

If Andrew is rich, then he is happy.
Andrew is rich.

Is Andrew happy?

What is wrong with the above inferences? The question which is the con-
clusion has a direct answer which provides us with information that is already
present (directly or indirectly) in the premises. In other words, the question
which is the conclusion is logically redundant and thus not informative. So
IEL imposes the following additional necessary condition of validity on erotetic
inferences of the first kind:

(C2) (informativeness). A question which is the conclusion must be infor-
mative relative to the premises.

Informativeness is then explicated as the lack of entailment of any direct answer
from the premises; the applied concept of entailment need not be classical (see
below).

Here are examples of valid erotetic inferences of the first kind:

Mary is Peter’s mother.
If Mary is Peter’s mother, then Bill is
Peter’s father or George is Peter’s father.

Who is Peter’s father: Bill or George?

Someone stole the necklace.

Who did it?

5.2.2 Validity of erotetic inferences of the second kind

An erotetic inference of the second kind is conceived as an ordered triple
〈Q,X,Q1〉, where Q, Q1 are questions and X is a finite (possibly empty) set of
declarative sentences/d-wffs. The question Q is the interrogative premise (we
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will also call it initial question), the elements of X are declarative premises,
and the question Q1 is the conclusion.

The natural generalization of the standard condition of validity is:

(C3) (transmission of soundness/truth into soundness). If the initial
question is sound and all the declarative premises are true, then the question
which is the conclusion must be sound.

As an illustration, let us consider the following inference:

Where did Andrew leave for: Paris, London or Moscow?
If Andrew left for Paris, London or Moscow, then he departed in
the morning or in the evening.
If Andrew departed in the morning, then he left for Paris or London.
If Andrew departed in the evening, then he left for Moscow.

When did Andrew depart: in the morning, or in the evening?

The question which is the interrogative premise, that is:

Where did Andrew leave for: Paris, London or Moscow? (5.1)

offers three “possibilities”: Paris, London, and Moscow. The use of “leaves
for” suggests that these possibilities are mutually exclusive. We can construe
question (5.1) as having three direct answers, namely “Andrew left for Paris”,
“Andrew left for London”, and “Andrew left for Moscow”.2 The disjunction of
all of them is not a logical truth, however: it can happen that none of them
is true. Andrew might have left for Rome, or stayed at home, and so forth. In
other words, question (5.1) need not be sound.

Similarly, the question which is the conclusion, i.e.:

When did Andrew depart: in the morning, or in the evening? (5.2)

need not be sound either. The direct answers to question (5.2) are: “Andrew de-
parted in the morning” and “Andrew departed in the evening”. It may happen
that neither of them is true.

Finally, the declarative premises of the above inference need not be true.

However, suppose that question (5.1) being the interrogative premise is
sound, and that all the declarative premises are true. It follows that ques-
tion (5.2) which is the conclusion must be sound: it is impossible, given the
assumptions, that the direct answers are both false. In other words, the claim
of condition (C3) is fulfilled in the analysed case.

Sometimes the claim is fulfilled for trivial reasons, as in:

2 The short answers “Paris”, “London” and “Moscow” have, respectively, the same
meanings (in the current context) as the direct answers.
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Where did Andrew leave for?
If Andrew took his famous umbrella, then he left for London;
otherwise he left for Paris or Moscow.

Did Andrew take his famous umbrella?

The question which is the conclusion must be sound because the set of direct
answer consists of a sentence and its classical negation.

Let us stress that IEL regards (C3) only as a necessary condition of validity
of erotetic inferences of the second kind. Why? If condition (C3) had been
sufficient, then, for instance, the following would have been valid inferences:

Is Andrew a logician?
Some philosophers are logicians, and some are not.

Is Andrew a philosopher?

Is Coco a human?
Humans are mammals.

Is Coco a mammal?

The problem here is that the questions which are conclusions have direct an-
swers that are cognitively useless: these answers, if accepted, would not con-
tribute to finding answers to initial questions.3 On the other hand, an intuitive
account of validity suggests that direct answers to the question which is the
conclusion should be potentially useful, on the basis of the declarative premises,
for finding an answer to the initial question. To secure this, IEL imposes the
following necessary condition of validity of erotetic inferences of the second
kind:

(C4) (open-minded cognitive usefulness). For each direct answer B to
the question which is the conclusion there exists a non-empty proper subset
Y of the set of direct answers to the initial question such that the following
condition holds:

(♣) if B is true and all the declarative premises are true, then at least one
direct answer A ∈ Y to the initial question must be true.

In other words, each direct answer to the question which is the conclusion
should, together with the declarative premises, narrow down the class of possi-
bilities offered by the initial question. Condition (C4) can be clarified in terms
of multiple-conclusion entailment (see below). As a special case, a singleton
class of possibilities can show up, but this is not required in general.

The following inference is valid:

3 In the first case none of the answers is potentially useful. As for the second case,
the negative answer is useful, whereas the affirmative answer is useless. Needless
to say, in any of the above cases condition (C3) is satisfied for a trivial reason, due
to the structure of the “question-conclusion” only.
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How old is Andrew?
Andrew is as old as Peter.

How old is Peter?

Condition (C4) is now fulfilled in the “one-to-one” way: each instantiation of
“Peter is ... years old”, together with the declarative premise, yield a (direct)
answer to the initial question. In other words, the relevant proper subsets are
singleton sets. It is obvious that condition (C3) is fulfilled as well.

Now consider the already analysed inference:

Where did Andrew leave for: Paris, London or Moscow?
If Andrew left for Paris, London or Moscow, then he departed in
the morning or in the evening.
If Andrew departed in the morning, then he left for Paris or London.
If Andrew departed in the evening, then he left for Moscow.

When did Andrew depart: in the morning, or in the evening?

The direct answers to the question which is the conclusion are:

Andrew departed in the morning. (5.3)

Andrew departed in the evening. (5.4)

Suppose that answer (5.3) is true and that all the declarative premises are
true. It follows that Andrew left for Paris or London. In other words, given
the assumptions, a true direct answer to the initial question belongs to the
following proper subset of the set of all direct answers:

{Andrew left for Paris, Andrew left for London} (5.5)

Now suppose that answer (5.4) is true and that the declarative premises are
true. It follows that Andrew left for Moscow. In terms of sets: a true direct
answer to the question which is the conclusion belongs to the following proper
subset of the set of all the direct answers:

{Andrew left for Moscow} (5.6)

which happens to be a singleton set. Thus condition (C4) is fulfilled. We have
already shown that condition (C3) is satisfied as well. Hence the analysed
inference is valid.

The already analysed inference:

Where did Andrew leave for?
If Andrew took his famous umbrella, then he left for London;
otherwise he left for Paris or Moscow.

Did Andrew take his famous umbrella?
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is valid as well. Condition (C3) is fulfilled for trivial reasons. As for the condi-
tion (C4), the affirmative answer to the question which is the conclusion yields,
together with the declarative premise, that Andrew left for London. Thus the
proper subset (of the set of direct answers to the initial question) that corre-
sponds to the affirmative answer is:

{Andrew left for London} (5.7)

In the case of the negative answer, the corresponding proper subset is:

{Andrew left for Paris, Andrew left for Moscow} (5.8)

Finally, the following is also a valid inference:

Where does Andrew live?
Andrew lives in a university town in Western Poland.

Which towns in Western Poland are university towns?

The conclusion is an open-condition question understood in the “all-the-cases“
way.4 The question should be formalized as a general which-question5; a di-
rect answer to it specifies a finite list of towns and claims, truly or not, that
these are the only university towns in Western Poland. So each direct answer
to the question which is the conclusion narrows down, along with the declar-
ative premise, the class of possibilities offered by the initial question and thus
condition (C4) is fulfilled. It is clear that condition (C3) is satisfied as well.

Comments. Questions usually have many direct answers. Let us stress that
condition (C4) is rather demanding: it is required that for each direct answer
to the “question-conclusion” there exists a non-empty proper subset of the
set of direct answers to the initial question such that the relevant clause (♣)
is satisfied. Roughly, each direct answer to a “question-conclusion” of a valid
erotetic inference (of the second kind) is supposed to be potentially cognitively
useful. One may argue that this is too much and that only some of the answers
should do. However, when each direct answer to a “question-conclusion” is
potentially cognitively useful, then a true answer, if found, becomes actually
cognitively useful: the “search space” for a true direct answer to the initial
question decreases.6 Condition (C4) is neutral with respect to the issue which
(if any) direct answer to the “question-conclusion” is actually true: it only
requires each direct answer to the question to stay in the appropriate semantic
relation with some non-empty proper subset of the set of all the direct answers
to the initial question. This is why the label “open-minded” is used in the name
of condition (C4).

4 See Chapter 1, section 1.1.
5 See Chapter 2, section 2.4.3.
6 Of course, assuming that the declarative premises are true. The initial “search

space” is the whole set of direct answers to the initial question.



56 5 Inferential Erotetic Logic: An Introduction

5.3 Validity and question raising

Validity is a normative notion. In the case of erotetic inferences the appropriate
notion of validity is given neither by God nor by Tradition. So some more
or less arbitrary decisions have to be made. IEL decides to consider as valid
these erotetic inferences of the first kind which have the features described
by conditions (C1) and (C2). As for erotetic inferences of the second kind,
conditions (C3) and (C4), jointly, determine the relevant concept of validity
used within IEL.

Conditions (C1) – (C4) are expressed somewhat loosely. Of course, IEL
offers more than just formulating them. The following semantical concepts are
introduced: (i) evocation of questions by sets of d-wffs, and (ii) erotetic implica-
tion of questions by questions and (possibly) sets of d-wffs. Validity of erotetic
inferences of the first kind is then defined in terms of evocation, whereas va-
lidity of erotetic inferences of the second kind is defined by means of erotetic
implication. The proposed definitions of evocation and erotetic implication are
explications of the relevant notions of question raising (cf. Wísniewski (1995),
Chapter 1). By defining the semantic concept “a set of d-wffs X evokes a ques-
tion Q” we explicate the concept “a question Q arises from a set of declarative
sentences X”. The definition of “a question Q implies a question Q1 on the
basis of a set of d-wffs X” provides an explication of the notion “a question Q1

arises from a question Q and a set of declarative sentences X”. Thus, although
conditions (C1) and (C2) on the one hand, and conditions (C3) and (C4) on
the other seem diverse at first sight, the analysis of validity of erotetic infer-
ences proposed by IEL is based on a certain general idea: the conclusion of a
valid erotetic inference arises from the premises.

5.4 The logical basis of IEL

5.4.1 Syntax

IEL accepts the non-reductionist approach to NLQ’s. As for formal languages,
questions are supposed to be introduced into them according to the “enrich
with” method (see section 2.1 of Chapter 2). What we need is a formal lan-
guage which has both d-wffs and e-formulas/questions among its well-formed
expressions, where questions are distinct from well-formed expressions of other
categories. Then we need some assignment of direct answers to questions. It is
assumed that questions (but not necessarily all of them) of formal languages
represent questions of natural languages: question Q represents a NLQ Q∗

construed in such a way that possible just-sufficient answers to Q∗ are repre-
sented/formalized by direct answers to Q, where “just-sufficient” means “satis-
fying the request of a question by providing neither less nor more information
than it is requested”. The exemplary languages presented in Chapter 2, built
according to the semi-reductionistic pattern, are of the above kind, but they
are not the only one. One can construct appropriate languages e.g. according to
Kubiński’s approach or Belnap’s approach, to mention only the richest sources
of ideas (see Belnap and Steel (1976), Kubiński (1980)).
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Some specific assumptions. In general considerations concerning IEL it
is assumed that the following conditions are satisfied by the relevant formal
languages with questions:

(sc1) direct answers are sentences, i.e. d-wffs with no individual or higher-
order free variables (since sentential functions are not definite enough in
order to answer anything);7

(sc2) each question has at least two direct answers (since a necessary condition
of being a question is to present at least two “alternatives” or possibilities).

Sometimes the following condition is also imposed:

(sc3) each finite and at least two-element set of sentences is the set of direct
answers to some question.

Note that all the languages considered in sections 2.4.1, 2.4.2 and 2.4.3 of
Chapter 2 fulfil conditions (sc1) and (sc2). Condition (sc3) is not fulfilled by
the erotetic sequent language L?

`cpl, but is satisfied by the remaining languages.

5.4.2 Semantics

Both evocation and erotetic implication are semantic concepts, defined inter
alia in terms of mc-entailment and entailment. Thus it is supposed that the
declarative part of the language under consideration is supplemented with a
semantics rich enough to define these concepts of entailment. In the general
setting we use the conceptual apparatus of Minimal Erotetic Semantics de-
scribed in Chapters 3 and 4; we suppose that the class of admissible partitions
of a language is determined and this, as we have seen, enables us to define –
and operate with – the remaining concepts.

Needless to say, the conceptual apparatus of MiES is general enough to
allow both Classical Logic and a non-classical logic to be the logic of d-wffs.
IEL is neutral with respect to the issue of what “The Logic” of declaratives is.

Final remark. There are erotetic inferences (of the first and second kind)
which are beyond the scope of the analysis of validity provided by IEL. The
conditions of validity (C1) – (C4) presuppose that the relevant questions have
well-defined sets of direct answers, and that each direct answer has a truth
value. So one cannot apply them to erotetic inferences whose conclusions (and
erotetic premises) do not satisfy these assumptions. The problem of validity of
erotetic inferences involving such questions is left open by IEL.

7 As for propositional languages, direct answers are propositional formulas.
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Evocation of Questions

In this chapter we introduce the concept of evocation of a question by a set
of d-wffs, and we address the issue of validity of erotetic inferences of the first
kind.

On the whole we assume that we deal with a formal language with ques-
tions, L, which satisfies the conditions specified in section 5.4 of Chapter 5.
The semantic concepts used are characterized in Chapters 3 and 4, and are
understood accordingly. For brevity, we omit the specifications “in L” and “of
L”.

6.1 Definition of evocation

The basic intuition which underlies the concept of evocation is very simple.
Let X be a set of d-wffs. If the truth of all the d-wffs in X guarantees the
existence of a true direct answer to a question Q, but does not yield the truth
of any single direct answer to Q, we say that X evokes Q. Of course, we do not
restrict ourselves to cases when X consists of truths: we only claim that Q is
sound (i.e. has a true direct answer) assuming that X consists of truths, and
that this assumption is not “strong enough” to determine which answer to Q
is true: only the existence of a true (direct) answer is guaranteed.

The concept of multiple-conclusion entailment (see section 3.2 of Chapter
3) seems ideally suited to express the above idea in exact terms. Let us recall
that it may happen that a set of d-wffs X mc-entails a set of d-wffs Y , although
no single d-wff in Y is entailed by X. Suppose that X and Y are connected
that way. Thus, intuitively speaking, we have the following situation: the truth
of all the d-wffs in X guarantees the existence of a true d-wff in Y , but does
not guarantee the truth of any particular element of Y . In other words: the
truth of all the X’s yields that at least one element of Y is true, but does not
determine which one is true. Now think of Y as of the set dQ of direct answers
to a question Q, and the definition of evocation is ready. To be more precise,
we put:
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Definition 6.1 (Evocation of questions). A set of d-wffs X evokes a question
Q (in symbols: E(X,Q)) iff

1. X ||= dQ, and
2. for each A ∈ dQ : X |6|= {A}.

Clause (2) is formulated in terms of mc-entailment for uniformity only: accord-
ing to Corollary 3.14 (see page 34), X does not mc-entail {A} if, and only if X
does not entail A.

Strictly speaking, Definition 6.1 provides us with a schema of definition
of evocation. Recall that we have assumed that an arbitrary but fixed formal
language with questions that fulfils the conditions described in section 5.4 of
Chapter 5 is considered. When a language is specified, we are confronted with
evocation in the language. To highlight this, one can add a subscript to E.
Thus, for example, EL?

cpl
and EL?

fom
refer to evocation in the languages L?

cpl

and L?
fom , respectively.

6.1.1 Transmission of truth into soundness

Clause (1) of Definition 6.1 expresses in exact terms the idea of transmission of
truth into soundness: if only all the d-wffs in X are true, then Q must be sound.
“Must” means here: there is no admissible partition P = 〈TP,UP〉 such that
X ⊂ TP and dQ ∩ TP = ∅. In other words, an evoked question is supposed to
be sound relative to the evoking set. Of course, we do not require that, in each
admissible partition, X consists of truths. We only require that the condition:

if X ⊂ TP, then dQ ∩ TP 6= ∅

holds for every admissible partition P.

Assume that E(X,Q). Tables (6.1) and (6.2) describe possible semantic
connections between X and Q. P = 〈TP,UP〉 stands for an arbitrary but fixed
admissible partition of L; a question is called unsound in P if the question is
not sound in P.

Table 6.1. From evoking d-wffs to evoked question.

X Q

X ⊂ TP sound in P

X 6⊂ TP sound in P or unsound in P

Table 6.2. From evoked question to evoking d-wffs.

Q X

sound in P X ⊂ TP or X 6⊂ TP

unsound in P X 6⊂ TP
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6.1.2 Informativeness

Clause (2) of Definition 6.1 explicates the idea of informativeness of a question
being the conclusion.1 According to the clause, informativeness amounts to the
lack of entailment of any direct answer to Q from X. The underlying idea is:
the problem expressed by Q cannot be resolved just by performing a legitimate
deduction of a direct answer to Q from the set X. Or, what is the other side of
the same coin, one can legitimately derive more from the set X enriched with
a direct answer to Q than from the set X itself, for any direct answer to Q.
But, as “is entailed” is neither synonymous with “is known as entailed” nor
with “is entailed and known”, the degree of idealization (with respect to the
phenomenon of question raising) is high.2

6.2 Some properties of evocation

For properties of evocation see Wísniewski (1991), Wísniewski (1995), Wísnie-
wski (1996). Let us only mention some of them.

The corollaries presented below are immediate consequences of the relevant
definitions.

Corollary 6.2. Let Q be a normal question. Then E(X,Q) iff X |= B for each
B ∈ PresQ, and X 6|= A for each A ∈ dQ.

Therefore evocation of normal questions amounts to the fact that each pre-
supposition is entailed, but no direct answer is entailed. The situation is even
simpler in the case of regular questions, that is, questions which have single
presuppositions whose truth guarantee their soundness, i.e. prospective pre-
suppositions. The following holds:

Corollary 6.3. Let Q be a regular question. Then E(X,Q) iff X |= B for some
B ∈ PPresQ, and X 6|= A for each A ∈ dQ.

A question is proper if it is normal but not self-rhetorical.3 We have:

Corollary 6.4. A question Q is proper iff PresQ 6= ∅ and E(PresQ,Q).

Evocation is not monotone. The following hold:

1 See section 5.2.1 of Chapter 5.
2 Another problem with the definition of evocation is this. Suppose that the under-

lying entailment relation is only “positively decidable”, that is, roughly, there is an
effective method of deciding that entailment holds, but there is no effective method
of deciding that it does not hold (to be more precise: entailment is r.e., but is not
recursive). In such a case evocation is not even positively decidable. However, we
can still prove that some questions of a given form are evoked by sets of d-wffs
that comprise d-wffs of strictly defined forms, and results of this kind enable us
to formulate question-evoking rules. These rules can be claimed as governing valid
erotetic inferences.

3 See section 4.5 of Chapter 3.
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Corollary 6.5. Let E(X,Q) and X ⊂ Y . Then E(Y,Q) iff Y 6|= A for each
A ∈ dQ.

Corollary 6.6. Let E(X,Q) and dQ ⊂ dQ1. Then E(X,Q1) iff X 6|= A for
each A ∈ dQ1 \ dQ.

Finally, let us note:

Corollary 6.7. If E(X,Q), then X ⊂ TP for some admissible partition P.

Contrary to appearance, Corollary 6.7 is not tantamount to the claim that
inconsistent sets of d-wffs do not evoke any question. The reason is this: nothing
prevents us from taking a paraconsistent logic as a background. In such a case
(at least some) classically inconsistent sets will belong to sets of “truths” of
appropriate admissible partitions and Ex Falso Quodlibet will not hold. The
general framework of IEL does not prejudge what admissible partitions are
and thus the underlying logic of declaratives need not be classical.

6.2.1 A digression: Meheus’ analysis

The case of inconsistent premises is a challenge to the analysis of question
raising, since questions often arise from inconsistencies. The solution sketched
above is of course not the only one. As it is pointed at in Meheus (1999):

When generalizing the idea of erotetic arguments to the inconsistent
case, a distinction has to be made between two types of situations: those
in which the inconsistencies are (for the time being) accepted as true,
and those in which this is not the case. (...) Important for this [sec-
ond] type is that the requirements for erotetic arguments have to be
defined not with respect to the inconsistent set Γ , but with respect to
the consistent core of Γ . (Meheus (1999), p. 58)

Meheus (1999) analyses the second situation and proposes interesting solutions.
The starting point is this: instead of considering a (possibly inconsistent) set
of premises Γ , one considers a couple of sets of d-wffs, {Γ0, Γ1}. Intuitively, Γ0

represents premises which, due to some external reasons, are accepted as true,
whereas Γ1 is made up of premises which, again for external reasons, are inter-
preted as only possibly true. For brevity, let us consider only the propositional
case, and only one of the logics proposed by Meheus.

The analysis goes on in terms of the modal propositional logic S5. One
considers S5-models of the form:

〈W, {w0}, V 〉 (6.1)

where W is a non-empty set (of possible worlds), w0 ∈ W , and V is the val-
uation function defined in the usual way; in this section by a S5-model we
will mean a structure of the above kind.4 A model (6.1) verifies a d-wff A iff

4 Since we deal with S5, we do not need the accessibility relation. Let us stress that
we depart from the S5-semantics used in the original paper. Moreover, Meheus
works in the framework of adaptive logics; however, for the reasons of space, we
do not present her proposal in this setting.
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V (A,w0) = 1. Let ∆ = {Γ0, Γ1}, where Γ0 and Γ1 are sets of non-modal d-
wffs. We say that (6.1) is a model of ∆ = {Γ0, Γ1} iff for each A ∈ Γ0 we have
V (A,w0) = 1, and for each B ∈ Γ1 we have V (♦B,w0) = 1. A d-wff A is S5-
entailed by ∆ = {Γ0, Γ1} if A is verified by each model of ∆. A Dab-formula is a
disjunction of d-wffs of the form ♦C∧¬C, where C is a literal, that is, a propo-
sitional variable or a negation of a propositional variable. Generally speaking,
a Dab-formula expresses the fact that the relevant literal(s) “behave(s) abnor-
mally”. Now we are ready to define the crucial concept.

A model M = 〈W, {w0}, V 〉 of ∆ is reliable iff the following condition holds:
(?) for each literal C: if ♦C ∧ ¬C is verified by M , then ♦C ∧ ¬C is a

disjunct of a certain minimal Dab-formula which is S5-entailed by ∆.

(The “minimality” condition means that no formula which results from the
Dab-formula by dropping a disjunct is S5-entailed by ∆.) Then mc-entailment
between couples of sets of non-modal d-wffs and sets of non-modal d-wffs is de-
fined in terms of reliable models, and evocation of questions is defined according
to the schema presented in Definition 6.1. The only difference is that questions
are now evoked, strictly speaking, by couples of sets of d-wffs {Γ0, Γ1}.

The outcome of Meheus’ analysis is this. When Γ0 ∪ Γ1 is a (classically)
consistent set, we get all the properties (and examples) of evocation defined in
the standard setting. If, however, Γ0 ∪ Γ1 is inconsistent, it still evokes some
questions. The same holds for the remaining two proposals (which differ from
the just presented in defining the relevant class of models), included in Meheus
(1999).

6.2.2 Generation of questions

Generation of questions is a special case of evocation: we say that a set of d-wffs
X generates a question Q iff X evokes Q and the set of direct answers to Q
is not mc-entailed by the empty set. The underlying intuition is: a generated
question is made sound by the generating set and is informative with respect to
this set. For generation of questions see Wísniewski (1989), Wísniewski (1990b),
Wísniewski (1991), Wísniewski (1995).

6.3 Examples of evocation

Let us now present some examples of evocation.

Recall that L?
cpl is the language of CPL enriched with questions (see sec-

tion 2.4.1 of Chapter 2 for details). The letters p, q, r stand for propositional
variables. For brevity, we use object-level language expressions instead of their
metalinguistic names, and we simply list the elements of evoking sets. For con-
ciseness, we write E instead of EL?

cpl
. Here are examples of evocation in L?

cpl.

E(p ∨ ¬p, ?p) (6.2)

E(p ∨ q, ?p) (6.3)
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E(p ∨ q, ?q) (6.4)

E(p→ q, ?p) (6.5)

E(p→ q, ?q) (6.6)

E(p↔ q, ?{p ∧ q,¬p ∧ ¬q}) (6.7)

E(p ∨ q, ?{p, q}) (6.8)

E(p ∨ q, ?(p ∧ q)) (6.9)

E(p ∨ q, ?{p ∧ q, p ∧ ¬q,¬p ∧ q}) (6.10)

E(p→ q ∨ r, ?{p→ q, p→ r}) (6.11)

E(p→ q ∨ r, p, ?{q, r}) (6.12)

E(¬(q ∧ r), ?{¬q,¬r}) (6.13)

E(p ∧ q → r, ?{p→ r, q → r}) (6.14)

E(p ∧ q → r,¬r, ?{¬p,¬q}) (6.15)

E((p ∨ q) ∨ r, ?{p, q ∨ r}) (6.16)

E(p ∧ (q ∨ r), ?{p ∧ q, p ∧ r}) (6.17)

E(p ∧ (q ∨ r), ?{(p ∧ q) ∧ ¬r, (p ∧ r) ∧ ¬q, p ∧ (q ∧ r)}) (6.18)

Now we turn to the language L?
fom described in section 2.4.3 of Chapter 2;

the semantics is presented in section 3.1.6 of Chapter 3. Recall that admissi-
ble partitions of L?

fom are determined by those models of L?
fom in which each

element of the domain has a name. The letters P , R are used as metalanguage
variables for predicates, and c, c∗, c1, . . . are metalanguage variables for in-
dividual constants. Distinct metalanguage variables are supposed to represent
distinct object-level language entities.

Here are examples of evocation in L?
fom . For brevity, we use E instead of

EL?
fom

.

E(Pc1, . . . , P cn, ?∀xPx) (6.19)

E(Pc1 ∧Rc1, . . . , P cn ∧Rcn, ?∀x(Px→ Rx)) (6.20)

E(Pc1 ∧Rc1, . . . , P cn ∧Rcn, P cn+1, ?Rcn+1) (6.21)

E(Pc1, P c2, ?c1 = c2) (6.22)

E(∃xPx, ?{Pc,∃x(Px ∧ x 6= c)}) (6.23)

E(∃x(Px ∧ (x = c1 ∨ . . . ∨ cn)), ?{Pc1, . . . , P cn}), (6.24)
where n > 1.

E(¬∀x(x = c1 ∨ . . . ∨ x = cn → Px), ?{¬Pc1, . . . ¬Pcn}), (6.25)

where n > 1.

E(∃x(Px ∧ (x = c1 ∨ . . . ∨ x = cn)), ?S(Px)), (6.26)

where n > 1.
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E(¬∀x(x = c1 ∨ . . . ∨ x = cn → Px), ?S(¬Px)), (6.27)

where n > 1.
E(∃xPx, ?S(Px)) (6.28)

E(∀x(Px↔ x = c1∨x = cn)∨∀x(Px↔ x = c∗1∨. . .∨x = c∗k), ?U(Px)) (6.29)

It is not by accident that a general which-question occurs above only once. In
order to analyse evocation of these questions one needs, besides mc-entailment
relativized to models in which all elements of domains have names in the lan-
guage, also the quantifier “there exist finitely many” (cf. Wísniewski (1990a)),
or at least numerical quantifiers (cf. Wísniewski (1995)).

Remark. We have considered above only relatively simple languages enriched
with rather simple questions. For further examples of evocation, in particu-
lar evocation of complex questions in more sophisticated first-order languages
enriched with questions see Wísniewski (1995), Chapter 5. For evocation of
questions based on non-classical logics see, besides Meheus (1999), also Meheus
(2001), De Clercq and Verhoeven (2004), De Clercq (2005).

6.4 Evocation and validity

We are now ready to define validity of erotetic inferences of the first kind, that
is, inferences leading from declarative sentences/d-wffs to questions. The clauses
of the definition of evocation explicate the intuitive conditions of validity (C1)
and (C2) specified in section 5.2.1 of Chapter 5. Thus we put:

Definition 6.8 (Validity I ). An erotetic inference of the first kind, 〈X,Q〉, is
valid iff E(X,Q).

By proposing the above definition we implicitly assume that the X’s and Q are
expressions of a language for which evocation is appropriately defined.

The second clause of the definition of evocation amounts to the lack of en-
tailment of directs answers to the evoked question from the evoking set. On the
other hand, the intuitive concept of informativeness of a question with regard
to the relevant premises can be construed in a less demanding way: one can
require that no direct answer is an “immediate” or “obvious” consequence of
the premises. It is still an open problem how to express the idea of “not being
an immediate consequence” in purely semantic terms. Whatever the solution
might have been, applying it in the definition of validity would probably re-
sulted in a complex notion lacking intuitive clarity. This is the reason for which
IEL defines validity of erotetic inferences of the first kind in terms of question
evocation, where informativeness is conceptualized as the lack of entailment.
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6.4.1 Some comments

Definition 6.8 pertains to erotetic inferences in formal languages, since, strictly
speaking, evocation is defined only for these languages. On the other hand,
erotetic inferences are most often performed by means of premises and con-
clusions being expressions of natural languages. The above concept of validity
can be applied to such inferences only in an indirect way: an inference is valid
just in case evocation holds between the formal counterparts of premises and
conclusions. In this respect, there is no substantial difference between the con-
cept(s) of validity proposed by IEL and those proposed by other logics: quite
a lot has to be assumed in order to decide whether an inference performed in
a natural language is valid in view of a given logic.

The final remark is this. Validity of “declarative” inferences, that is, in-
ferences having declarative sentences as premises and conclusions, is usually
defined in terms of (logical) entailment. Yet nobody claims that every infer-
ence which is not valid in this sense is substantially faulty: there are inductive
inferences, analogical inferences, and so forth. Similarly, besides valid erotetic
inferences of the first kind there are invalid, but still plausible, inferences of the
analysed type. However, so far IEL does not provide an account of them.
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Erotetic Implication

The concept of evocation enables us to define validity of erotetic inferences
which have questions as conclusions, but not as premises, that is, erotetic in-
ferences of the first kind. Erotetic inferences of the second kind have questions
among premises and questions as conclusions. In order to present the account
of validity of these inferences proposed by IEL we need the concept of erotetic
implication.

As in Chapter 6, in the general considerations we assume that we deal with
a formal language with questions, L. The language is supposed to satisfy the
conditions specified in section 5.4 of Chapter 5, and the semantic concepts
introduced in Chapters 3 and 4 apply accordingly. For conciseness, we omit the
specifications “in L” and “of L”.

7.1 Definition of erotetic implication

Erotetic implication is a ternary relation between a question, a (possibly empty)
set of d-wffs, and a question.

Definition 7.1 (Erotetic implication). A question Q implies a question Q1

on the basis of a set of d-wffs X (in symbols: Im(Q,X,Q1)) iff:

1. for each A ∈ dQ : X ∪ {A} ||= dQ1, and
2. for each B ∈ dQ1 there exists a non-empty proper subset Y of dQ such that
X ∪ {B} ||= Y .

Recall that ||= stands for multiple-conclusion entailment, whereas dQ and dQ1

are the sets of direct answers to Q and Q1, respectively. Thus Q implies Q1 on
the basis of X if, first, the set of direct answers to Q1 is mc-entailed by each
set made up of X and a direct answer to Q, and second, each direct answer to
Q1 mc-entails, together with X, some non-empty proper subset of the set of
direct answers to Q.

If Im(Q,X,Q1), then Q1 is said to be the implied question, Q is the implying
question, and the elements of X are called auxiliary d-wffs.
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We have defined erotetic implication in terms of mc-entailment. A reader
not adjusted to operating with mc-entailment can get a better comprehension
of erotetic implication when the following “translation” is made. First, think
of:

1. for each A ∈ dQ : X ∪ {A} ||= dQ1

in terms of:

1 *. for each A ∈ Q: the set X ∪ {A} entails a disjunction of all the
direct answers to Q1.

Second,

2. for each B ∈ dQ1 there exists a non-empty proper subset Y of dQ
such that X ∪ {B} ||= Y

as an equivalent of:

2 *. for each B ∈ Q1 there exists a non-empty proper subset Y of dQ
such that X ∪ {B} entails a disjunction of all the elements of Y .

In both cases the corresponding disjunction can be finite or infinite, but is still
“classical” in the sense that it is true if, and only if at least one disjunct is true.

Speaking in very general terms: question Q implies question Q1 on the basis
of a set of d-wffs X if, and only if, first, the soundness of Q warrants, together
with the truth of all the d-wffs in X, the soundness of Q1, and second, each
direct answer to Q, if true, and if all the d-wffs in X are true, warrants that
a true direct answers to Q1 belongs to a specified proper subset of the set of
all the direct answers to Q. The peculiarity of erotetic implication lies in its
goal-directness: an implied question is semantically grounded in the implying
question and, at the same time, facilitates the answering of the implying ques-
tion. Let us add: facilitates by narrowing down. Clause (2) of Definition 7.1 is
equivalent to:

2 **. each set made up of a direct answer to Q1 and X narrows down
the set of direct answers to Q.

where the concept of narrowing down is understood in the sense specified by
Definition 3.17 (see page 35).

7.1.1 Eliminating a direct answer vs. narrowing down the set of
direct answers

As we have already observed1, narrowing down need not equal elimination.

Let us consider the conditions (in both cases it is assumed that B ∈ dQ1):

(nd) there exists a non-empty proper subset Y of dQ such that X ∪{B} ||= Y ,

(el) X ∪ {B} eliminates a certain direct answer C to Q.

1 See section 3.3 of Chapter 3.
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Conditions (nd) and (el) are not equivalent. The following example illus-
trates this.

Example 7.2. Let Q = ?{p, q}, X = ∅, and Q1 = ?p. Thus dQ = {p, q} and
dQ1 = {p,¬p}. Clearly, ¬p eliminates p. But ¬p entails neither p nor q, and
hence ¬p does not mc-entail any proper subset of {p, q}.

Let Q = ?{q, r, s}, X = {p→ q,¬p→ r ∨ s}, and Q1 = ?p. Now X ∪ {¬p}
mc-entails the proper subset {r, s} of dQ. However, X∪{¬p} does not eliminate
any direct answer to Q. When one gets ¬p, it is still possible that q holds.

However, the following is true:

Corollary 7.3. Let B ∈ dQ1. If condition (el) is fulfilled by X ∪ {B} and, in
addition, the following condition holds:

(rs) X ||= dQ

then condition (nd) is satisfied by X ∪ {B}.

Proof. Let P = 〈TP,UP〉 be an arbitrary but fixed admissible partition of the
considered language. Since X ||= dQ, then also X ∪ {B} ||= dQ. Suppose that
X ∪ {B} ⊂ TP. Hence dQ ∩ TP 6= ∅. Let C be a direct answer to Q eliminated
by X ∪ {B}. Thus C ∈ UP. It follows that (dQ \ {C}) ∩ TP 6= ∅. Therefore
X ∪{B} ||= dQ \ {C}. But dQ \ {C} is a non-empty proper subset of dQ, since
each question is supposed to have at least two direct answers. ut

The clause X ||= dQ requires the implying question Q to be sound relative to
the set of auxiliary d-wff X. This requirement is neither included in nor implied
by Definition 7.1.

We also have:

Corollary 7.4. Let B ∈ dQ1. If condition (nd) is fulfilled by X ∪{B} and the
following is true:

(me) for any A,C ∈ dQ, where A 6= C: A eliminates C

then condition (el) is satisfied by X ∪ {B}.

Proof. Let Y be a non-empty proper subset of dQ such that X ∪ {B} ||= Y .
Suppose that X∪{B} does not eliminate any direct answer to Q. Thus for each
A ∈ dQ there exists an admissible partition P such that X ∪{B,A} ⊂ TP. But
Y is a proper subset of dQ. Therefore dQ\Y 6= ∅. Let C ∈ dQ\Y and let P∗ be
an admissible partition such that X ∪{B,C} ⊂ TP∗ . By the condition (me), C
eliminates any other direct answer to Q. Hence Y ⊂ UP∗ . Thus X ∪{B} |6|= Y .
A contradiction. ut

Clause (me) expresses the idea of mutual exclusiveness of direct answers.
However, IEL does not assume that direct answers to all questions should be
mutually exclusive. But when we consider an implying question,Q, whose direct
answers are mutually exclusive, the second clause of the definition of erotetic
implication holds just in case the following condition is satisfied:

2 ***. for each B ∈ dQ1: X ∪ {B} eliminates a certain direct answer to Q.
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7.1.2 Narrowing down vs. answering

Sometimes narrowing down reduces to answering. Let us consider the following
condition:

(dp) X ∪ {B} entails a direct or partial answer to Q.

Clearly, we have:

Corollary 7.5. Let B ∈ dQ1. If condition (dp) is fulfilled by X ∪ {B}, then
condition (nd) is satisfied by X ∪ {B}.

Thus the second clause of Definition 7.1 of erotetic implication is fulfilled if
each direct answer to the implied question entails, together with the auxiliary
d-wffs, some direct or partial answer to the implying question.

There are cases in which narrowing down amounts to answering.

The relation ||= of mc-entailment is said to be compact if whenever X ||= Y ,
then X1 ||= Y1 for some finite subsets X1 of X, and Y1 of Y . We say that a
language contains disjunction, ∨, construed classically just in case the following
condition holds:

(CL∨) for each admissible partition P = 〈TP,UP〉 of the language:

{A1, . . . , An} ∩ TP 6= ∅ iff pA1 ∨ . . . ∨Anq ∈ TP.

One can prove:

Corollary 7.6. Let B ∈ dQ1. If a language includes disjunction construed
classically, mc-entailment in the language is compact, and condition (dp) holds
for X ∪ {B}, then condition (nd) is fulfilled by X ∪ {B}.

Proof. By compactness, X ∪ {B} ||= Y yields X ∪ {B} ||= Y1 for some finite
subset Y1 of Y . Suppose that Y1 = ∅. Then X ∪ {B} ||= {A} for any A ∈ dQ.
Now suppose that Y1 6= ∅. By (CL∨) we get X ∪ {B} |= C1 ∨ . . . ∨ Ck, where
Y1 = {C1, . . . , Ck}. If k = 1, then C1 ∈ dQ; otherwise C1 ∨ . . .∨Ck is a partial
answer to Q. ut

7.1.3 Some comparisons

The concept of erotetic implication was introduced in Wísniewski (1990a).
Without going into historical details2 let us only compare it with three, in a
sense, alternative proposals. The first one comes from Belnap and Steel (1976),
the second from Groenendijk and Stokhof (1997). The last one was put forward
by Grobler (2006).

2 A brief overview can be found in section 1.6 of Wísniewski (1995).
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Belnap: entailment between quasiformulas

Belnap assigns the logical values, Truth and Falsity, to questions. A question
Q is said to be true in a model M if at least one direct answer to Q is true in
M (for simplicity, we disregard here Belnap’s distinction between interrogatives
and questions). Let us use the term quasiformulas as a cover term for d-wffs and
questions of a formal language. A straightforward generalization of the standard
concept of entailment is: a set of quasiformulas Γ entails a quasiformula γ iff
γ is true in each model in which all the quasiformulas in Γ are true.

As a special case we get: a question Q1 is entailed by a question Q together
with a set of d-wffs X iff X ∪{Q} entails Q1. Given some obvious assumptions,
Belnap-style entailment of Q1 from X ∪ {Q} holds just in case clause (1) of
Definition 7.1 is fulfilled. Yet, recall that erotetic implication is defined by
means of two clauses.

Groenendijk and Stokhof: interrogative entailment

Let us now consider the proposal present in Groenendijk and Stokhof (1997).
The underlying idea is:

“(...) interrogatives ?φ1 . . . ?φn entail (...) interrogative ?ψ in a model
M iff any proposition which completely answers all of the ?φ1 . . . ?φn
in M, also completely answers ?ψ in M. Logical entailment amounts to
entailment in all models.” (Groenendijk and Stokhof (1997), p. 1090).

Thus as a special case we get something like: a question Q entails a question
Q1 iff for each model M , any proposition that completely answers Q in M ,
completely answers Q1 in M as well.

The idea resembles that of containment in the sense of Hamblin (1958): a
question Q contains a question Q1 iff from each answer to Q one can deduce
some answer to Q1.

Clause (2) of Definition 7.1 of erotetic implication expresses an idea simi-
lar to that of Groenendijk and Stokhof. However, in our case it is the implied
question which facilitates answering the implying question. Moreover, as corol-
laries 7.5 and 7.6 illustrate, partial answers are allowed. Yet, the Groenendijk-
Stokhof’s proposal does not provide any counterpart of the first clause of the
definition of erotetic implication. On the other hand, if each question considered
is supposed to be safe, the condition is trivially fulfilled.

Grobler: falsificationist erotetic implication

Grobler (cf. Grobler (2006), Grobler (2012)) defines a ternary relation between
a question, a set of sentences, and a question, which he coins falsificationist
erotetic implication. By using the conceptual apparatus of this book, Grobler’s
notion can be defined as follows:

Definition 7.7 (Falsificationist erotetic implication). A question Q f-implies
a question Q1 on the basis of a set of d-wffs X (in symbols: Imf (Q,X,Q1)) iff:
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1. for each A ∈ dQ : X ∪ {A} ||= dQ1, and
2. for some B ∈ dQ1: X ∪ {B} eliminates a direct answer to Q.

The scopes of Im and Imf overlap, but neither is included in the other. By
Corollary 7.4, Im yields Imf for implying questions with mutually exclusive
direct answers. On the other hand, clause (2) of Definition 7.7 is only existential,
while the second clause of Definition 7.1 of erotetic implication speaks about
each direct answer to Q1. If we strengthened clause (2) of the above definition
to the general one (i.e. to the clause (2***) discussed in section 7.1.1 above), the
“strong” falsificationist erotetic implication defined that way would yield IEL’s
erotetic implication given that the condition (rs) (again, see section 7.1.1) is
satisfied by X and Q, that is, the implying question is sound relative to the
auxiliary d-wffs.

Grobler’s erotetic implication, nevertheless, has substantial applications in
the areas of philosophy of science and epistemology.3

7.2 Erotetic implication and validity

The clauses (1) and (2) of Definition 7.1 of erotetic implication express in exact
terms the intuitions which lie behind the conditions of validity (C3) and (C4)
pertaining to erotetic inferences of the second kind.4 Let us recall them:

(C3) (transmission of soundness/truth into soundness). If the initial
question is sound and all the declarative premises are true, then the question
which is the conclusion must be sound.

(C4) (open-minded cognitive usefulness). For each direct answer B to
the question which is the conclusion there exists a non-empty proper subset
Y of the set of direct answers to the initial question such that the following
condition holds:

(♣) if B is true and all the declarative premises are true, then at least one
direct answer A ∈ Y to the initial question must be true.

We have:

Corollary 7.8. The condition:

(1) for each A ∈ dQ : X ∪ {A} ||= dQ1

is fulfilled iff the following condition holds:

(1’) for each admissible partition P = 〈TP,UP〉 of the language: if Q is sound
in P and X ⊂ TP, then Q1 is sound in P.

Proof. Assume that (1) holds and that (1’) does not hold. Thus there exists an
admissible partition, P, such that dQ1 ⊂ UP, X ⊂ TP, and A ∈ TP for some
A ∈ dQ. Hence X ∪ {A} |6|= dQ1. A contradiction.

3 See Grobler (2006), Grobler (2012).
4 See section 5.2.2 of Chapter 5.
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Assume that (1’) holds and (1) does not hold. Hence for some A ∈ dQ we
have X ∪ {A} |6|= dQ1. It follows that there exists an admissible partition, P,
such that Q is sound in P, X ⊂ TP, and Q1 is not sound in P. A contradiction
again. ut

Corollary 7.9. The condition:

(2) for each B ∈ dQ1 there exists a non-empty proper subset Y of dQ such that
X ∪ {B} ||= Y

is satisfied iff the following condition is fulfilled:

(2’) for each B ∈ dQ1 there exists a non-empty proper subset Y of dQ such that
for each admissible partition P = 〈TP,UP〉 of the language: if X∪{B} ⊂ TP,
then A ∈ TP for some A ∈ Y .

Proof. It suffices to observe that, by the definition of mc-entailment,X∪{B} ||=
Y just in case for each admissible partition P: if X ∪ {B} ⊂ TP, then A ∈ TP

for some A ∈ Y . ut

The modal element present in the conditions (C3) and (C4) is mirrored by
the reference to the class of admissible partitions.

Validity of erotetic inferences of the second kind, that is, inferences leading
from questions, on the basis of sets of declarative sentences, to questions, is
then defined as follows.

Definition 7.10 (Validity II ).
An erotetic inference of the second kind, 〈Q,X,Q1〉, is valid iff Im(Q,X,Q1).

As previously, by proposing the above definition we implicitly assume that the
X’s, as well as Q and Q1, are expressions of a language for which erotetic
implication is appropriately defined. Again, since erotetic implication has been
defined for formal languages, the above concept of validity can be applied to
erotetic inferences performed in natural languages only in an indirect way: an
inference is valid just in case erotetic implication holds between the formal
counterparts of premises and conclusions.

Comments. Let us recall: validity is a normative concept and in the case
of inferences having questions as conclusions the notion of validity is neither
given by God nor by Tradition. As long as erotetic inferences of the second
kind are concerned, IEL proposes to construe their validity according to the
ideas expressed by the conditions (C3) and (C4), and hence defines validity in
terms of erotetic implication. While condition (C3) is relatively unquestionable,
the acceptance of condition (C4) may raise doubts due to its strength. The
condition, and erotetic implication thereof, require every direct answer to the
question which is the conclusion to be potentially cognitively useful. One can
propose a weakening of this general requirement or/and a reconsideration of
the underlying (semantic) concept of cognitive usefulness. From the standpoint
of IEL, however, an outcome of such an analysis amounts to a characterization
of a class of erotetic inferences of the second kind which need not be IEL-
valid, but, nevertheless, are worth to be distinguished. In particular, Grobler’s
proposal (see section 7.1.3 above) can also be applied this way.
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7.3 Some properties of erotetic implication

For the properties of erotetic implication see Wísniewski (1990a), Wísnie-wski
(1994a), Wísniewski (1995), Wísniewski (1996), and Wísniewski (2001). Below
we will describe only some of them, mainly those which shed light on some
interesting features of valid erotetic inferences of the second kind.

Till the end of this section by “inferences”, unless otherwise stated, we will
mean erotetic inferences of the second kind.

7.3.1 Mutual soundness

The following is true:

Corollary 7.11. Let Im(Q,X,Q1). Then X ||= dQ iff X ||= dQ1.

Proof. Let X ||= dQ. Suppose that X |6|= dQ1. Thus for some admissible parti-
tion P we have X ⊂ TP and dQ1 ⊂ UP. Hence, by clause (1) of Definition 7.1,
A ∈ UP for each A ∈ dQ and therefore dQ ⊂ UP. It follows that X |6|= dQ. A
contradiction.

Now suppose that X ||= dQ1, but X |6|= dQ. Thus there exists an admissible
partition, P, such that X ⊂ TP and dQ ⊂ UP. Hence Y ⊂ UP for any Y ⊂ dQ.
By clause (2) of Definition 7.1 we get B ∈ UP for any B ∈ dQ1, and thus
dQ1 ⊂ UP. Hence X |6|= dQ1. A contradiction again. ut

A question being a premise of a valid inference need not be sound relative
to the declarative premises. Corollary 7.11 shows, however, that the “question-
premise” is sound relative to the declarative premises if, and only if the question
which is the conclusion is sound relative to them.

As an immediate consequence of Corollary 7.11 we get:

Corollary 7.12. Let Im(Q,X,Q1) and let P = 〈TP,UP〉 be an admissible par-
tition of the language such that X ⊂ TP. Then Q1 is sound in P iff Q is sound
in P.

Tables 7.1 and 7.2 display possible connections. We assume that Q (erotet-
ically) implies Q1 on the basis of X, and that P = 〈TP,UP〉 is an arbitrary but
fixed admissible partition of the relevant language.

Table 7.1. From implying question to implied question.

Q X Q1

sound in P X ⊂ TP sound in P

unsound in P X ⊂ TP unsound in P

sound in P X 6⊂ TP sound in P or unsound in P

unsound in P X 6⊂ TP sound in P or unsound in P

What comes as a surprise are: the second row of table 7.1, and the first row
of table 7.2. It is clear that a valid inference has to lead from a sound question to
a sound question given that the declarative premises are true. But the relevant
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Table 7.2. From implied question to implying question.

Q1 X Q

sound in P X ⊂ TP sound in P

unsound in P X ⊂ TP unsound in P

sound in P X 6⊂ TP sound in P or unsound in P

unsound in P X 6⊂ TP sound in P or unsound in P

rows show that validity defined in terms of erotetic implication warrants even
more. The second row of table 7.1 shows that a valid inference based on true
declarative premises, but unsound erotetic premise always leads to an unsound
conclusion. Thus one cannot pass, in a valid inference and with the help of
true declarative premises, from a question that does not have a true direct
answer to a question which has such answer. The first row of table 7.2 shows,
in turn, that a valid inference with sound conclusion, based on true declarative
premises, always has sound erotetic premise. Thus if a questioner has passed,
in a valid inference and with the help of true declarative premises, to a question
which has a true direct answer, this confirms that his/her initial question has a
true direct answer as well. Both warranties are substantial, since (as in the case
of inferences with declarative premises and conclusions) the semantic status,
i.e. soundness/unsoundness, of a question being a premise or a conclusion can
be either unknown to a questioner or inadequately assessed by him/her.

7.3.2 Monotony and transitivity issues

It is obvious that erotetic implication is monotone with respect to d-wffs. We
have:

Corollary 7.13. If Im(Q,X,Q1) and X ⊂ Y , then Im(Q,Y,Q1).

Thus when we extend the set of declarative premises of a valid erotetic inference
of the second kind, validity is still retained.

Question Q∗ is an extension of question Q if dQ is a proper subset of dQ∗.
A moment’s reflection shows that the following hold:

Corollary 7.14. Let Im(Q,X,Q1), and let Q? be an extension of Q, Then
Im(Q?, X,Q1) iff X ∪ C ||= dQ1 for each C ∈ dQ? \ dQ.

Corollary 7.15. Let Im(Q,X,Q1), and let Q?1 be an extension of Q1. Then
Im(Q,X,Q?1) iff for each C ∈ dQ?1\dQ1 there exists a non-empty proper subset
Y of dQ such that X ∪ {C} ||= Y .

Thus when we extend an implying question or an implied question, validity
need not be retained, but is retained given that some additional conditions
(specified above) are met.

Erotetic implication is not “transitive” in the sense that there are cases in
which Im(Q,X,Q1) and Im(Q1, X,Q2) hold, but Im(Q,X,Q2) does not hold.
Here is a simple (counter)example taken from language L?

cpl. We have:
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Im(?p, ∅, ?{p ∧ q, p ∧ ¬q,¬p}) (7.1)

Im(?{p ∧ q, p ∧ ¬q,¬p}, ∅, ?q) (7.2)

but we (fortunately!) do not have Im(?p, ∅, ?q). However, some special kinds of
erotetic implication are “transitive” (see below).

7.4 Some special kinds of erotetic implication

7.4.1 Regular erotetic implication

The second clause of Definition 7.1 of erotetic implication can be fulfilled in
such a way that the relevant Y ’s are singleton sets. In this case we get regular
erotetic implication.

Definition 7.16 (Regular erotetic implication). A question Q regularly im-
plies a question Q1 on the basis of a set of d-wffs X iff

1. for each A ∈ dQ : X ∪ {A} ||= dQ1, and
2. for each B ∈ dQ1 there exists C ∈ dQ such that X ∪ {B} |= C.

Regular erotetic implication is “transitive” in the sense explained by:

Corollary 7.17. If Q regularly implies Q1 on the basis of X, and Q1 regularly
implies Q2 on the basis of X, then Q regularly implies Q2 on the basis of X.

7.4.2 Strong erotetic implication

The second clause of the definition of erotetic implication can be trivially sat-
isfied due to the fact that X alone mc-entails some non-empty proper subset of
dQ. This cannot happen, however, in the case of the so-called strong erotetic
implication.

Definition 7.18 (Strong erotetic implication). A question Q strongly implies
a question Q1 on the basis of a set of d-wffs X iff

1. for each A ∈ dQ : X ∪ {A} ||= dQ1, and
2. for each B ∈ dQ1 there exists a non-empty proper subset Y of dQ such that
X ∪ {B} ||= Y , but X |6|= Y .

A regular strong erotetic implication is a special case; its definition is straight-
forward.

7.4.3 Pure erotetic implication. Analyticity

Pure erotetic implication is erotetic implication on the basis of the empty set.

Definition 7.19 (Pure erotetic implication). A question Q implies a question
Q1 (in symbols: Im(Q,Q1)) iff:

1. for each A ∈ dQ : A ||= dQ1, and
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2. for each B ∈ dQ1 there exists a non-empty proper subset Y of dQ such that
B ||= Y .

Regular pure erotetic implication can be defined accordingly.

Recall that ?A abbreviates ?{A,¬A}. For further reference let us note:

Corollary 7.20. If A |= B and B |= A, then Im(?A, ?B).

For languages with negation we can define another special kind of pure
erotetic implication: the analytic one.

Definition 7.21 (Analytic erotetic implication). A question Q analytically
implies a question Q1 iff Im(Q,Q1) and each immediate subformula of a direct
answer to Q1 is a subformula of a direct answer to Q or is a negation of a
subformula of a direct answer to Q.

Erotetic inferences which do not involve any declarative premise(s), but
have questions as premises and conclusions are instances of erotetic inferences
of the second kind. The following corollary characterizes an important feature
of valid erotetic inferences in which no declarative premise occurs.

Corollary 7.22. Let Im(Q,Q1). Then Q1 is safe iff Q is safe, and Q1 is risky
iff Q is risky.

Proof. By Corollary 4.15 and Corollary 7.11. ut

Thus a valid erotetic inference of the analysed kind always leads from a safe
question to a safe question, and from a risky question to a risky question.
Moreover, one cannot arrive at a safe question when the premise is not a safe
question, and similarly for riskiness.

7.5 Examples of erotetic implication

As in the case of evocation, Definition 7.1 of erotetic implication is schematic:
when a language is specified, one gets the definition of erotetic implication
in the language. To indicate that erotetic implication in a given language is
considered, one can add a subscript to Im.

Let us now present some examples of erotetic implication in the languages
L?
cpl and L?

fom . In what follows we use the letters A, B, C, D, with subscripts

if needed, as metalanguage variables for d-wffs of L?
cpl and L?

fom . When no
quantifiers or symbols referring to individual variables or constants occur, the
formulas presented below refer both to erotetic implication in L?

cpl and L?
fom ;

otherwise only L?
fom is taken into consideration. We shall supplement the ex-

amples with comments included in square brackets, which will indicate the kind
of erotetic implication involved. The comment “not regular” means “it is not
the case that each instance is regular”, and similarly for analyticity.
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7.5.1 Pure erotetic implication: examples

Recall that ?A stands for a simple yes-no question to be read “Is it the case
that A?”. The following:

?± |A,B|
abbreviates:

?{A ∧B,A ∧ ¬B,¬A ∧B,¬A ∧ ¬B}

which can be read “Is it the case that A and is it the case that B?”; the direct
answers are: A ∧B, A ∧ ¬B, ¬A ∧B, ¬A ∧ ¬B. A question of the form:

?{A ∧B,A ∧ ¬B,¬A}

is a conditional question with revocable antecedent and can be read “Is it the
case that A?; if so, is it also the case that B?”.

As long as L?
fom is concerned, the relevant metalanguage variables that occur

in whether-questions are supposed to represent sentences (i.e. closed d-wffs).
Metalinguistic expressions of the form Ax and Bx refer to sentential functions
of L?

fom with only one free variable. Recall that the sentences that occur in a
whether-question are supposed to be pairwise syntactically distinct.

Here are examples of pure erotetic implication.

Im(?¬A, ?A) (7.3)

[regular, analytic]

Im(?A, ?¬A) (7.4)

[regular, analytic]

Im(?{A,B}, ?{B,A}) (7.5)

[regular, analytic]

Im(?{A,B ∨ C}, ?{A,B,C}) (7.6)

[regular, analytic]

Im(?{A,B,C}, ?{A,B ∨ C}) (7.7)

[not regular, analytic]

Note that although in the cases (7.6) and (7.7) the implying question and
the implied question switch their places, this is the regularity condition which
makes the difference. As we will show below, sometimes analyticity performs
an analogous role.

Im(?± |A,B|, ?A) (7.8)
[not regular, analytic]

Im(?± |A,B|, ?B) (7.9)

[not regular, analytic]

Im(?A, ?± |A,B|) (7.10)

[regular, not analytic]

Im(?B, ?± |A,B|) (7.11)

[regular, not analytic]
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Im(?± |A,B|, ?(A⊗B)) (7.12)

[not regular, not analytic if ⊗ 6= ∧]

where ⊗ is any of the connectives: ∧,∨,→,↔.

Im(?(A⊗B), ?± |A,B|) (7.13)

[regular, analytic]

where ⊗ is any of the connectives: ∧,∨,→,↔.

Im(?{A ∧B,A ∧ ¬B,¬A}, ?A) (7.14)

[not regular, analytic]

Im(?A, ?{A ∧B,A ∧ ¬B,¬A}) (7.15)

[regular, not analytic]

Im(?{A,¬A,B}, ?B) (7.16)

[not regular, analytic]

Im(?{A,¬A,¬B}, ?B) (7.17)

[not regular, analytic]

Im(?∀xAx, ?∃x¬Ax) (7.18)

[regular ]

Im(?∃xAx, ?∀x¬Ax) (7.19)

[regular ]

Im(?∀xAx, ?± |∃xAx, ∃x¬Ax|) (7.20)

[regular ]

Im(?± |∃xAx, ∃x¬Ax|, ?∃xAx) (7.21)

[not regular ]

Im(?∃xAx, ?± |∀xAx,∀x¬Ax|) (7.22)

[regular ]

Im(?± |∀xAx,∀x¬Ax|, ?∀xAx) (7.23)

[not regular ]

Im(?∀xAx, ?{∃x¬Ax,¬∃x¬Ax,¬∃xAx}) (7.24)

[regular ]

Im(?∃xAx, ?{∀x¬Ax,¬∀x¬Ax, ∀xAx}) (7.25)

[regular ]

One can easily get further examples of pure erotetic implication by applying
Corollary 7.20.
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7.5.2 Erotetic implication on the basis of non-empty sets of d-wffs:
examples

For brevity, we simply list the elements of the relevant sets of auxiliary d-wffs.
The following hold:

Im(?A,A↔ B, ?B) (7.26)

[regular ]

Im(?A,B → A,C → ¬A,B ∨ C, ?{B,C}) (7.27)

[regular ]

Im(?(A⊗B), A◦, ?B) (7.28)

[regular ]

where ⊗ is any of the connectives: ∧,∨,→,↔, and A◦ equals ¬A or equals A.

Im(?(A⊗B), B◦, ?A) (7.29)

[regular ]

where ⊗ is any of the connectives: ∧,∨,→,↔, and B◦ equals ¬B or equals B.

Im(?A,B → A, ?{A,¬A,B}) (7.30)

[regular ]

Im(?A,A→ B, ?{A,¬A,¬B}) (7.31)

[regular ]

A digression . It is not the case that ?A erotetically implies ?B on the basis
of B → A. One can consider this as a shortcoming. But ?B is accessible from
?A and B → A in two steps, by applying (7.30) and then (7.16):

Im(?A,B → A, ?{A,¬A,B})

Im(?{A,¬A,B}, ? B)

Each of the steps in a valid erotetic inference.

Similarly, ?B is accessible from ?A and A→ B in two steps, by (7.31) and
(7.17):

Im(?A,A→ B, ?{A,¬A,¬B})

Im(?{A,¬A,¬B}, ?B)

Transitions from ?∀xAx to ?∃xAx, and from ?∃xAx to ?∀xAx also require
two steps. In the former case we apply (7.24) and a special case of (7.17):5

Im(?∀xAx, ?{∃x¬Ax,¬∃x¬Ax,¬∃xAx})

Im(?{∃x¬Ax,¬∃x¬Ax,¬∃xAx}, ?∃xAx)

whereas in the latter case we rely on (7.25) and an instance of (7.16):6

Im(?∃xAx, ?{∀x¬Ax,¬∀x¬Ax, ∀xAx})

5 Alternatively, (7.20) and (7.21).
6 Or on (7.22) and (7.23).
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Im(?{∀x¬Ax,¬∀x¬Ax, ∀xAx}, ?∀xAx)

As in the case of examples of evocation, c, c1, c2, . . . are metalanguage
variables for individual constants; it is assumed that distinct metalanguage
variables represent distinct individual constants.7 We have:

Im(?A(x/c),∀x(Ax↔ Bx), ?B(x/c)) (7.32)

[regular ]

Im(?A(x/c),∀x(Ax↔ Bx ∧ Cx), ?± |B(x/c), C(x/c)|) (7.33)

[regular ]

Im(?{A(x/c1), A(x/c2)},∀x(Ax↔ Bx ∧ Cx),

B(x/c1), C(x/c2), ?{B(x/c2), C(x/c1)}) (7.34)

[regular ]

Im(?{A(x/c1), . . . , A(x/cn)},∃x(Ax∧(x = c1∨. . .∨x = cn)), ?A(x/ci)) (7.35)

[regular if n = 2]

where n > 1 and 1 ≤ i ≤ n.

A notational convention. We abbreviate

?{A1, . . . , An}

as:
?[A|n] (7.36)

We have:
Im(?[A|n], A1 ∨ . . . ∨An, ?Ai) (7.37)

[regular if n = 2]

where n > 1 and 1 ≤ i ≤ n.

A digression . Observe that we do not have Im(?[A|n], ?Ai). The reason is
that ¬Ai need not mc-entail a proper subset of {A1, . . . , An}. But {A1 ∨ . . . ∨
An,¬Ai} mc-entails {A1, . . . , An} \ {Ai}.

The following hold:

Im(?[A|n], A1 ∨ . . . ∨An,¬(A1 ∧ . . . ∧An), ?[¬A|n]) (7.38)

[regular if n = 2]

where n > 1.
Im(?[A|n], B1 ↔ A1, . . . , Bn ↔ An, ?[B|n]) (7.39)

[regular ]

where n > 1.

7 When double indices are used, this assumption is, unless otherwise stated, can-
celled; cf. (7.56) below.
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Im(?[A|n], B1 → A1, . . . , Bn → An, B1 ∨ . . . ∨Bn, ?[B|n]) (7.40)

[regular ]

where n > 1.

Im(?[A|n], B → A1 ∨ . . . ∨Ai−1,¬B → Ai ∨ . . . ∨An, ?B) (7.41)

[regular if n = 2]

where n > 1 and 1 < i ≤ n.

Im(?[A|n], B → A1 ∨ . . . ∨Ai−1, C → Ai ∨ . . . ∨An, B ∨ C, ?{B,C}) (7.42)

[regular if n = 2]

where n > 1 and 1 < i ≤ n.

Im(?[A|n], B, ?{B → A1, . . . , B → An}) (7.43)

[regular ]
where n > 1.

Recall that an existential which-question, ?S(Ax), can be read “Which x is
such that Ax?”. Recall also that admissible partitions of L?

fom are determined
by those models in which each element of the domain is “named” by some
individual constant(s). As a result, we have:

∃xAx ||=L?
fom

S(Ax) (7.44)

and, for any individual constant c:

{∃xAx,¬A(x/c)} ||=L?
fom

(S(Ax) \ {A(x/c)}) (7.45)

Im(?S(Ax),∃xAx, ?A(x/c)) (7.46)

[not regular ]

Im(?S(Ax),∃xAx,∀x(Ax↔ Bx), ?B(x/c)) (7.47)

[not regular ]

Im(?S(Ax),∀x(Ax↔ Bx), ?S(Bx)) (7.48)

[regular ]

Im(?S(Ax), B → ∃x(Ax ∧ (x = c1 ∨ . . . ∨ x = ci−1)),

C → ∃x(Ax ∧ (x = ci ∨ . . . ∨ x = cn)), B ∨ C, ?{B,C}) (7.49)

[regular if n = 2]

where n > 1 and 1 < i ≤ n.

Im(?S(Ax),∀x(Bx→ Ax),∃x(Bx ∧ (x = c1 ∨ . . . ∨ x = cn)),

?{B(x/c1), . . . , B(x/cn)}) (7.50)

[regular ]

where n > 1.
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Im(?S(Ax),∀x(Ax→ x = c1 ∨ . . .∨x = cn), ?{A(x/c1), . . . , A(x/cn)}) (7.51)

[regular ]
where n > 1.

Im(?S(Ax),∃xAx, ∀x(Ax→ x = c1 ∨ . . . ∨ x = cn), ?A(x/ci)) (7.52)

[regular if n = 2]
where 1 ≤ i ≤ n.

Im(?S(Ax),∃xBx, ∀x(Bx→ Ax), ?S(Bx)) (7.53)

[regular ]

Im(?S(Ax),∃xAx,¬∀xAx, ?S(¬Ax)) (7.54)

[not regular ]

A general which-question, ?U(Ax), can be read “What are all of the x’s
such that Ax?”. Its direct answers fall under the schema:

A(x/c1) ∧ . . . ∧A(x/cn) ∧ ∀x(Ax→ x = c1 ∨ . . . ∨ x = cn)

where n ≥ 1 and c1, . . . , cn stand for distinct individual constants.

Im(?U(Ax),∀x(Ax↔ Bx), ?U(Bx)) (7.55)
[regular ]

Im(?U(Ax), B → ∀x(Ax↔ x = ci1 ∨ . . . ∨ x = cin),

C → ∀x(Ax↔ x = cj1 ∨ . . . ∨ x = cjk), B ∨ C, ?{B,C}) (7.56)
[regular ]

where n ≥ 1 and k ≥ 1.

Im(?S(Ax),∃≥kxAx, ?U(Ax)) (7.57)
[regular ]

where ∃≥kx is the numerical quantifier “there exist at most k”, and k ≥ 1.

Im(?S(Ax),∀x(Bx→ Ax),∃xBx, ∃≥kxBx, ?U(Bx)) (7.58)

[regular ]
where k ≥ 1.

Im(?S(Ax),∃xAx, ∀x(Ax→ ¬Bx),∃xBx, ∃≥kxBx, ?U(Bx)) (7.59)

[not regular ]
where k ≥ 1.

Im(?U(Ax),∃≥kxAx,A(x/c1) ∧ . . . ∧A(x/cn),

?∀x(Ax→ x = c1 ∨ . . . ∨ x = cn)) (7.60)

[not regular ]
where n ≤ k and k ≥ 1.

For further examples of erotetic implication (in different languages) see e.g.
Wísniewski (1990a), Wísniewski (1994a), Wísniewski (1995) (Chapter 7), or
Wísniewski (2001). See also the following chapters of this book.
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7.6 Erotetic implication, evocation, and goal-directness

IEL gives an account of validity of erotetic inferences of the first and second
kinds. These inferences differ with regard to types of premises involved, and
the intuitions which underlie the respective concepts of validity are diverse.
However, from a purely formal point of view evocation of questions and erotetic
implication are interrelated in many ways. Let us end this chapter by pointing
out some of the connections.

7.6.1 Evocation as erotetic implication by non-factual questions

We say that a d-wff A of a language L is valid iff for each admissible partition
of the language, A is true in the partition. We need the following auxiliary
concept:

Definition 7.23 (Non-factual question). A question Q of L is non-factual iff
each direct answer to Q is a valid d-wff.

Since no valid d-wff is a carrier of a factual information, the label “non-factual
question” seems appropriate. Needless to say, non-factual questions are safe
and self-rhetorical. Of course, there is no warranty that every language of the
considered kind includes non-factual question(s).

Recall that a question Q is informative relative to a set of d-wffs X iff no
direct answer to Q is entailed by X.

The following holds:

Theorem 7.24. Let L be a language of the considered kind in which non-
factual question(s) occur. Then EL(X,Q) iff

1. Q is informative relative to X, and
2. for each non-factual question Q? of the language: ImL(Q?, X,Q).

Proof. Let Q? be a non-factual question.

Suppose that EL(X,Q). Thus Q is informative relative to X, and X ||=L
dQ. Clearly X ∪ {A} ||=L dQ for any A ∈ dQ?, and X ∪ {B} |=L A for any
A ∈ dQ? and B ∈ dQ. Hence ImL(Q?, X,Q).

Suppose that ImL(Q?, X,Q). Since Q? is non-factual, X ||=L dQ?. Thus,
by Corollary 7.11, X ||=L dQ. By assumption, Q is informative relative to X.
Therefore EL(X,Q). ut

By and large, Theorem 7.24 says that evocation amounts to erotetic impli-
cation of informative questions by non-factual questions. Thus it is possible to
define evocation (in a somewhat tricky way) in terms of erotetic implication.
However, when it comes to the validity of erotetic inferences, a substantial dif-
ference still remains. Valid erotetic inferences of the second kind are, in a sense,
goal-directed: one derives a question from a question in order to facilitate the
answering of the initial question. On the other hand, the conclusion of a valid
erotetic inference of the first kind need not be dependent upon previous goals
and usually sets a goal by itself.
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7.6.2 Answering evoked questions by means of answers to implied
questions

Let Ξ be a non-empty set of questions. By a Ξ-answer set we mean a set of d-
wffs that comprises only direct answers to questions of Ξ and such that the set
includes exactly one direct answer to each question of Ξ. For instance, if Ξ =
{?p, ?q}, any of the following is a Ξ-answer set: {p, q}, {¬p, q}, {p,¬q}, {¬p,¬q}.

By a binary question we mean a question which has exactly two direct
answers. We say that entailment in L, |=L, is compact iff X |=L A yields
X? |=L A for some finite subset X? of X. By a valid d-wff we mean a d-wff
which is true in each admissible partition of the language.

Theorem 7.25. Let L be a language of the considered kind such that:

(a) entailment in L is compact,
(b) for each d-wff A of L there exists a d-wff, A, of the language such that A

eliminates A in L and ∅ ||=L {A,A}; moreover, {A,A} is the set of direct
answers to a question of L given that A is a direct answer to a question of
L,

(c) at least one d-wff of L is valid.

If EL(X,Q), then there exists a non-empty finite set, Ξ, of binary questions of
L that fulfils the following conditions:

1. each question of Ξ is evoked in L by X,
2. each question of Ξ is strongly implied in L by Q on the basis of X, and
3. for each Ξ-answer set Z: X ∪ Z entails in L a direct answer to Q.

Proof. For conciseness, we will be omitting references to L.

Let Λ be the family of all “inconsistent” sets of d-wffs of the language. More
formally:

Λ = {X : X 6⊂ TP for each admissible partition P}

If entailment is compact and the assumptions (b) and (c) hold, then the fol-
lowing is true:

(F) X ∈ Λ iff for some non-empty finite subset X? of X: X? ∈ Λ

For, if X ∈ Λ, then X |= C, where C is a formula eliminated by a valid d-wff
(and hence {C} ∈ Λ). By compactness of |= we get X? |= C for some finite
subset X? of X. Clearly, X? ∈ Λ and X? 6= ∅.

It follows that mc-entailment is compact. To see this, assume that X ||= Y .
Let Y = {B : B ∈ Y }. Obviously, X ||= Y iff (X ∪ Y ) ∈ Λ. Therefore, by (F),
Z ∈ Λ for some non-empty finite subset Z of X ∪ Y . But Z = X1 ∪ Y1, where
X1 ⊂ X, Y1 ⊂ Y , and at least one of X1, Y1 is non-empty. Hence X1 ||= Y1,
where X1, Y1 are finite subsets of X and Y , respectively. Thus ||= is compact.

Let E(X,Q). Then X ||= dQ and hence, by compactness of mc-entailment,
there exists a non-empty family % of finite subsets of dQ such that X ||= Z for
any Z ∈ %. Clearly, % contains minimal elements, that is, finite subsets of dQ
which do not have proper subsets mc-entailed by X. On the other hand, each
set in % has at least two elements; otherwise E(X,Q) would not hold.
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Let Z∗ = {A1, A2, . . . , An} be an arbitrary but fixed minimal element of %.
Clearly, n > 1. For each Ai ∈ Z∗ we fix the corresponding d-wff Ai. Then we
consider the following family of sets of d-wffs:

{{A1, A1}, . . . , {An−1, An−1}} (7.61)

For each element {Ai, Ai} of (7.61) we fix a question, Qi, such that dQi =
{Ai, Ai}. We designate the corresponding set of questions by Ξ.

Let 1 ≤ i ≤ n− 1. Since ∅ ||= {Ai, Ai}, we get X ||= dQi. If E(X,Q), then
X 6|= Ai. Suppose that X |= Ai. Since X ||= Z∗ and Ai eliminates Ai, we get
X ||= Z∗ \{Ai}. Hence Z∗ is not a minimal element of %. A contradiction. Thus
we may conclude that each question of Ξ is evoked by X.

Since ∅ ||= {Ai, Ai}, the first clause of Definition 7.18 of strong erotetic
implication is fulfilled by any question in Ξ. As for the second clause, observe,
first, that X ∪ {Ai} |= Ai, but, due to the fact that Q is evoked by X, also
X 6|= Ai. Now consider Ai. Since X ||= Z∗, where Z∗ ⊂ dQ, and Ai eliminates
Ai, we get X ∪ {Ai} ||= Z∗ \ {Ai}. As Z∗ is a minimal element of %, we also
have X |6|= Z∗ \ {Ai}. Therefore each question of Ξ is strongly implied, on the
basis of X, by the initial question Q.

Let ξ be a Ξ-answer set. There are two options: (a) Ai ∈ ξ for some 1 ≤ i ≤
n− 1, or (b) ξ = {A1, . . . , An−1}. If (a) holds, then X ∪ ξ entails Ai, which is
also a direct answer to Q. Assume that (b) holds. We have X ||= {A1, . . . , An}.
Thus X ∪ ξ entails An, which, again, is a direct answer to Q. ut

Note that the compactness assumption is dispensable if the set of direct
answers to Q is finite. The same holds true for the assumption (c). Needless
to say, the first part of the assumption (b) is fulfilled if the language contains
negation classically construed.

A philosophical comment is this: when the cognitive goal is set by a con-
clusion of a valid erotetic inference of the first kind, it can8 be accomplished
by answering question(s) arrived at by means of valid erotetic inference(s) of
the second kind. However, it cannot be said that this is always the best way of
reaching the goal. We will come back to this issue in Chapter 8.

Remark. Theorem 7.25 can be rephrased by using the concept of (generalized)
reducibility of questions to sets of questions. A question Q is reducible to a set
of questions Ξ on the basis of a set of d-wffs X iff (a) for each admissible
partition P of the language considered: if Q is sound in P and the d-wffs of X
are true in P, then each question of Ξ is sound in P, (b) for each Ξ-answer set
ξ: X ∪ ξ entails some direct answer to Q which is not entailed by X alone, and
(c) no question in Ξ has more direct answers than Q has. Thus the claim of
Theorem 7.25 is: given that conditions (a), (b), and (c) are met, a question Q
evoked by a set of d-wffs X is reducible, on the basis of X, to a finite set of
binary questions which are both evoked by X and strongly implied by Q along

8 Given that the assumptions of Theorem 7.25 are met or the evoked question has a
finite set of direct answers.
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with X. For an overview of various reducibility results pertaining to first-order
languages augmented with questions see Leśniewski and Wísniewski (2001).9

9 Besides generalized reducibility, the paper Leśniewski and Wísniewski (2001) con-
siders the case of plain reducibility, that is, reducibility not relativized to sets
of d-wffs. Both concepts were introduced in Wísniewski (1994b). Generalized re-
ducibility is extensively studied in Leśniewski (1997); see also Leśniewski (2000).
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Socratic Transformations

Is it possible to solve a problem by performing valid erotetic inferences only?
At first sight this question is rhetorical since the only plausible answer seems
to be “No”. In order to solve a problem one has to extract information and,
although questions are good tools for doing it, it is the answers that count.
However, there is an old idea, going back at least to Socrates, according to
which questions can be resolved by transforming them into questions whose
answers are, in a sense, evident. In this chapter we show how the idea can be
explicated in terms of IEL.

8.1 Language L?
`cpl again

Let us come back to the language L?
`cpl, whose syntax was presented in section

2.4.4 of Chapter 2, and semantics in section 3.1.3 of Chapter 3. In order to
make this chapter self-contained we recall the basic notions and we introduce
some notational conventions.

8.1.1 Syntax

Atomic d-wffs of L?
`cpl are CPL-sequents of the form S ` A, where S is a finite

sequence of CPL-formulas, and A is a single CPL-formula. Compound d-wffs
of L?

`cpl are built from the atomic d-wffs by means of & and/or ng. As for
CPC-formulas, we distinguish α and β formulas, and make some assignments
displayed in Table 8.1.

Table 8.1. α/β formulas.

α α1 α2 β β1 β2 β∗1

A ∧B A B ¬(A ∧B) ¬A ¬B A

¬(A ∨B) ¬A ¬B A ∨B A B ¬A
¬(A→ B) A ¬B A→ B ¬A B A

Terminology: sequents. Till the end of this chapter, unless otherwise stated,
by sequents we mean atomic d-wffs of L?

`cpl.
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Questions of L?
`cpl are of the form ?(Φ), where Φ is a non-empty finite se-

quence of atomic d-wffs of L?
`cpl, that is, sequents. Direct answers to a question:

?(S1 ` A1, . . . , Sn ` An) (8.1)

are of the forms (we omit unnecessary parentheses; ng stands for negation in
L?
`cpl):

S1 ` A1 & . . .& Sn ` An (8.2)

ng(S1 ` A1 & . . .& Sn ` An) (8.3)

Intuitively, the turnstile ` stands for CPL entailment/derivability.

Notation: concatenations of sequences of sequents. We use the semi-
colon as the concatenation-sign for sequences of sequents. Hence

Φ ; φ

denotes the concatenation of a sequence of sequents Φ and the one-term se-
quence 〈φ〉, where φ is a sequent.1 The expression:

Φ ; φ ; Ψ

refers to the concatenation of Φ ; φ and a sequence of sequents Ψ . Any of Φ, Ψ
may be empty.

Observe that φ1, . . . , φn can be displayed as:

φ1 ; . . . ; φn

Thus when Φ = 〈S1 ` A1〉 , . . . , 〈Sn ` An〉, the corresponding question can be
written as follows:

?(S1 ` A1 ; . . . ; Sn ` An) (8.4)

and we will proceed that way.2 The sequents in (8.4) are called constituents of
the question.

If Φ = 〈S ` A〉, that is, Φ is the one-term sequence 〈S ` A〉, we write the
question as:

?(S ` A) (8.5)

and we say that the question is based on a (single) sequent.

8.1.2 Semantics

Admissible partitions of L?
`cpl are defined as follows (we repeat Definition 3.6):

Definition 8.1 (Admissible partitions of L?
`cpl). A partition P = 〈TP,UP〉 of

L?
`cpl is admissible iff the following conditions hold:3

1 We omit, here and below, the signs 〈, 〉 when referring to one-term sequences.
2 Obeying this convention seems to facilitate reading; compare A,B ` C ; D ` A

with A,B ` C,D ` A.
3 As before (cf. page 28), ′ is the concatenation-sign for sequences of CPL-formulas;
r, u are metalanguage variables for d-wffs of L?

`cpl.
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1. pS ` αq ∈ TP iff pS ` α1q ∈ TP and pS ` α2q ∈ TP;
2. pS ′ T ` βq ∈ TP iff pS ′β∗1

′ T ` β2q ∈ TP;
3. pS ′ α ′ T ` Cq ∈ TP iff pS ′ α1

′ α2
′ T ` Cq ∈ TP;

4. pS ′ β ′ T ` Cq ∈ TP iff pS ′ β1 ′ T ` Cq ∈ TP and
pS ′ β2 ′ T ` Cq ∈ TP;

5. pS ` ¬¬Aq ∈ TP iff pS ` Aq ∈ TP;
6. pS ′¬¬A ′ T ` Bq ∈ TP iff pS ′A ′ T ` Bq ∈ TP;
7. pr & uq ∈ TP iff r ∈ TP and u ∈ TP;
8. if u /∈ TP, then png uq ∈ TP;
9. if u ∈ TP, then png uq /∈ TP.

A d-wff u is entailed in L?
`cpl by a d-wff r iff there is no admissible partition

P = 〈TP,UP〉 of L?
`cpl such that r ∈ TP and u ∈ UP.

A sequent S ` A is said to be CPL-valid iff A is true in each admissible
partition of Lcpl in which all the terms of S are true. In other words, S ` A
is CPL-valid just in case each CPL-valuation that makes true all the terms of
S makes A true as well. Thus CPL-validity of S ` A amounts to the CPL-
entailment/derivability of A from the set of terms of S.

8.2 From questions to questions

8.2.1 Some examples

Let us start with examples.

Example 8.2. We have:

ImL?
`cpl

(?(p→ q ` ¬q → ¬p), ?(p→ q,¬q ` ¬p)) (8.6)

(8.6) holds because affirmative answers to:

?(p→ q ` ¬q → ¬p) (8.7)

?(p→ q,¬q ` ¬p) (8.8)

entail each other in L?
`cpl, and similarly for negative answers. To see this, let

us assume, first, that the affirmative answer to (8.7), that is:

p→ q ` ¬q → ¬p (8.9)

belongs to TP for an arbitrary but fixed admissible partition P of L?
`cpl. Then,

by clause (2) of Definition 8.1, the d-wff:

p→ q,¬q ` ¬p (8.10)

is in TP as well. But (8.10) is the affirmative answer to question (8.8).

Now assume that (8.10) belongs to TP, again for an arbitrary but fixed ad-
missible partition P. Thus, by the clause (2), the affirmative answer to question
(8.7), that is, the d-wff (8.9), belongs to TP as well.
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The reasoning concerning negative answers goes along similar lines (we,
additionally, use clauses (8) and (9)).

Observe that (8.6) is a special case of:

ImL?
`cpl

(?(Φ ; S ` β; Ψ), ?(Φ ; S ′ β∗1 ` β2 ; Ψ)) (8.11)

For, ¬q → ¬p is a β-formula, β∗1 = ¬q, and β2 = ¬p. The reasoning that proves
(8.11) is similar to that justifying (8.6); the implying question and the implied
question differ with respect to one constituent only.

Since erotetic implication determines validity of erotetic inferences of the
second kind, we have:

Corollary 8.3. An inference from a question of the form:

?(Φ ; S ` β ; Ψ) (8.12)

to the corresponding question of the form:

?(Φ ; S ′ β∗1 ` β2 ; Ψ) (8.13)

is valid.

Thus, in particular, the transition from question (8.7) to question (8.8) is a
valid erotetic inference.

Validity of erotetic inferences is one thing, CPL-validity of sequents being
constituents of questions is another.

One can prove:

Corollary 8.4. Each constituent of a question of the form (8.12) is a CPL-
valid sequent if, and only if each constituent of the corresponding question of
the form (8.13) is a CPL-valid sequent.

The idea of the proof is simple: (8.12) and (8.13) differ with respect to only
one constituent/sequent. But, due to clause (2) of Definition 8.1, pS ` βq ∈ TP

iff pS ′ β∗1 ` β2q ∈ TP, for any admissible partition P.

Generally speaking, the transition from a question of the form (8.12) to the
correspondinq question of the form (8.13) is a valid erotetic inference in which,
at a deeper level, joint CPL-validity of sequents is preserved in both directions.

Example 8.5. The following holds:

ImL?
`cpl

(?(p→ q,¬q ` ¬p) , ?(¬p,¬q ` ¬p ; q,¬q ` ¬p)) (8.14)

Let TP be an admissible partition of L?
`cpl. Assume that (8.10), being the

affirmative answer to question (8.8):

?(p→ q,¬q ` ¬p)

is in TP. Hence, by clause (4) of Definition 8.1, the following:

¬p,¬q ` ¬p (8.15)



8.2 From questions to questions 93

q,¬q ` ¬p (8.16)

are in TP as well. Thus, by the clause (7), the d-wff:

(¬p,¬q ` ¬p) & (q,¬q ` ¬p) (8.17)

belongs to TP. But (8.17) is the affirmative answer to the question:

?(¬p,¬q ` ¬p ; q,¬q ` ¬p) (8.18)

Now assume that (8.17) is in TP. Therefore, by the clause (7), the d-wffs
(8.15) and (8.16) are in TP. Hence, due to the clause (4), (8.10), the affirmative
answer to question (8.8), belongs to TP.

Thus affirmative answers to questions (8.8) and (8.18) entail each other. It
is easily seen that the same holds for negative answers. Therefore (8.8) implies
(8.18) in L?

`cpl.

Observe that (8.14) is a special case of:

ImL?
`cpl

(?(Φ ; S ′ β ′ T ` B; Ψ), ?(Φ ; S ′ β1
′ T ` B ; S ′ β2

′ T ` B ; Ψ))

(8.19)
which is also true. Hence:

Corollary 8.6. An inference from a question of the form:

?(Φ ; S ′ β ′ T ` B ; Ψ) (8.20)

to the corresponding question of the form:

?(Φ ; S ′ β1
′ T ` B ; S ′ β2

′ T ` B ; Ψ) (8.21)

is valid.

At the same time we have:

Corollary 8.7. Each constituent of a question of the form (8.20) is a CPL-
valid sequent if, and only if each constituent of the corresponding question of
the form (8.21) is a CPL-valid sequent.

The general comment to be made is analogous as before.

Let us designate by s1 the following sequence of questions:

1. ?(p→ q ` ¬q → ¬p)
2. ?(p→ q,¬q ` ¬p)
3. ?(¬p,¬q ` ¬p ; q,¬q ` ¬p)

Each consecutive term of the sequence is erotetically implied by the term
that immediately precedes it. On the other hand, due to corollaries 8.4 and 8.7,
a consecutive term comprises CPL-valid sequent(s) if, and only if its immediate
predecessor comprises such sequent(s).

Now let us consider a similar sequence of questions, s2:

1. ?(p→ q ` ¬p→ ¬q)



94 8 Socratic Transformations

2. ?(p→ q,¬p ` ¬q)
3. ?(¬p,¬p ` ¬q ; q,¬p ` ¬q)

Everything what has been said above about s1 can be repeated concerning s2.
However, unlike s2, the sequence s1 ends with a question which is, in a sense,
rhetorical: no one doubts that a CPL-sequent which has the same formula on
both sides of the turnstile is valid, and that a CPL-sequent which has a formula
and its negation left to the turnstile is valid. The last question of sequence s1
reads:

Is it the case that: ¬p is CPL-entailed by ¬p,¬q and

¬p is CPL-entailed by q,¬q?

and its affirmative answer is evident. On the other hand, due to the transmission
of joint CPL-validity of sequents from bottom to top, it follows without the
need of any further reasoning that the sequent occurring in the first question is
CPL-valid, or, to put it differently, that the answer to the first question must
be affirmative. In other words, the initial issue is solved by pure questioning:
the only operations needed are performed upon questions which, let us stress,
need not be answered.

The case of sequence s2 is similar, though the solution provided is negative.
The last question of the sequence reads:

Is it the case that: ¬q is CPL-entailed by ¬p,¬p and

¬q is CPL-entailed by q,¬p?

and it is evident that the answer is negative, which, due to the transmission of
joint CPL-validity from bottom to top, amounts to the negative answer to the
first question.

Both sequences, s1 and s2, are Socratic transformations, but the first se-
quence, s1, is a successful transformation, that is, a Socratic proof.

8.2.2 E∗: An erotetic calculus for CPL

Statements (8.11) and (8.19) specified above are examples of metatheorems
stating what questions are implied by what questions. Metatheorems of this
kind enable us to formulate erotetic rules, being rules of transitions from ques-
tions to questions. A set of rules of this kind together with a characterization
of basic sequents (cf. below) constitute an erotetic calculus.

Here are the rules of the erotetic calculus E∗ for CPL.4 The letters S, T, U,W
stand for finite (possibly empty) sequences of CPL-formulas and ′ is the
concatenation-sign for these sequences. As before, the letters Φ, Ψ are metalan-
guage variables for finite (again, possibly empty) sequences of CPL-sequents,
and the semicolon is used as the concatenation-sign for sequences of CPL-
sequents. One-term sequences are represented by their terms.

4 Proposed in Wísniewski (2004b).



8.2 From questions to questions 95

Lα :
?(Φ ; S ′ α ′ T ` C ; Ψ)

?(Φ ; S ′ α1
′ α2

′ T ` C ; Ψ)
Rα :

?(Φ ; S ` α ; Ψ)

?(Φ ; S ` α1 ; S ` α2 ; Ψ)

Lβ :
?(Φ ; S ′ β ′ T ` C ; Ψ)

?(Φ ; S ′ β1 ′ T ` C ; S ′ β2 ′ T ` C ; Ψ)
Rβ :

?(Φ ; S ` β ; Ψ)

?(Φ ; S ′ β∗1 ` β2 ; Ψ)

L¬¬ :
?(Φ ; S ′ ¬¬A ′ T ` C ; Ψ)

?(Φ ; S ′A ′ T ` C ; Ψ)
R¬¬ :

?(Φ ; S ` ¬¬A ; Ψ)

?(Φ ; S ` A ; Ψ)

The letters “L” and “R” indicate that the appropriate rule “operates”
on the left or right side of the turnstile `. The second part of the rule’s name
indicates the form of a CPL-formula acted upon. For instance, rule Rα operates
on an α-formula occurring on the right side of the turnstile.

Rα and Lβ are branching rules, as the resulting “question-conclusion” has
more constituents than the “question-premise”. The remaining erotetic rules:
Lα, Rβ , L¬¬ and R¬¬ are non-branching.

The rules of E∗ are designed in such a way that each constituent of the
“question-conclusion” is a CPC-valid sequent if and only if each constituent of
the “question-premise” is a CPC-valid sequent. In other words, the transmission
of joint CPL-validity of sequents holds in both directions. On the other hand,
each application of a rule of E∗ retains validity of the corresponding erotetic
inference. Corollaries 8.3, 8.4, 8.6 and 8.7 justify the above claims for rules Rβ

and Lβ . As for the remaining rules, the corollaries needed can be proven in a
similar way, by using Definition 8.1. For details see Wísniewski (2004b).

The concept of Socratic transformation is characterized by:

Definition 8.8 (Socratic transformation). A sequence 〈s1, s2, . . .〉 of ques-
tions is a Socratic transformation of a question ?(Φ) via the rules of E∗ iff the
following conditions hold:

1. s1 = ?(Φ),
2. si, where i > 1, results from si−1 by an application of a rule of E∗.

The sequences s1 and s2 considered above (see page 93) are examples of
Socratic transformations of questions based on single sequents.

Since an application of a rule of E∗ is a transition from a question to a
question (erotetically) implied by the previous one, we get:

Corollary 8.9. Each step of a Socratic transformation via the rules of E∗ is
a valid erotetic inference.

Let us now introduce:

Definition 8.10 (Basic sequents). A sequent φ is basic iff φ is of one of the
following forms:

1. T ′B ′ U ` B, or
2. T ′B ′ U ′ ¬B ′W ` C, or
3. T ′ ¬B ′ U ′B ′W ` C.
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Note that any of T,U,W can be empty.

Thus a basic sequent either has its consequent among the premises, or has
a CPL-formula and its negation among the premises. Given this, the following
comes with no surprise:

Corollary 8.11. Each basic sequent is CPL-valid.

Now we are ready to introduce the concept of Socratic proof.

Definition 8.12 (Socratic proof ). A Socratic proof in E∗ of a sequent S ` A
is a finite Socratic transformation of the question ?(S ` A) via the rules of E∗
such that each constituent of the last question of the transformation is a basic
sequent.

The sequence s1 above is a Socratic proof in E∗, while the sequence s2 is not.
Here are further examples of Socratic proofs. For transparency, we highlight the
constituents which a given rule acts upon and we put the name of the rule to
the right.

Example 8.13.

` ?( (p→ q) ∧ (q → r)→ (p→ r) ) Rβ

?( (p→ q) ∧ (q → r) ` p→ r) Lα

?(p→ q, q → r ` p→ r ) Rβ

?( p→ q , q → r, p ` r) Lβ

?(¬p, q → r, p ` r ; q , q → r , p ` r) Lβ

?(¬p, q → r, p ` r ; q,¬q, p ` r ; q, r, p ` r)

Example 8.14.

?( ¬(p ∨ q) ` ¬p ∧ ¬q) Lα

?(¬p,¬q ` ¬p ∧ ¬q ) Rα

?(¬p,¬q ` ¬p ; ¬p,¬q ` ¬q)

The following holds:

Lemma 8.15. If sequent S ` A has a Socratic proof in E∗, then S ` A is
CPL-valid.

The reason is simple: basic sequents are CPL-valid, and the rules of E∗ preserve
joint CPL-validity of sequents from bottom to top.

Remark. Thus when a Socratic proof is found, there is no need for any further
deductive moves aimed at justifying validity of the sequent just (Socratically)
proven. Note also that the argument for validity has the form of a sequence
of questions and that a reasoning towards proof-search operates on questions
only. Moreover, one does not have to answer intermediate questions to arrive
at a proof, while the last question of a Socratic proof is, in a sense, rhetorical.

The following is true as well:
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Lemma 8.16. If sequent S ` A is CPL-valid, then S ` A has a Socratic proof
in E∗.

Generally speaking, Lemma 8.16 holds because the rules of E∗ are elimina-
tive, that is, each application of a rule eliminates either an occurrence of a
binary connective or two occurrences of negation. Moreover, there is no rule
that acts upon negated propositional variables. As a result, each Socratic trans-
formation in E∗ is finite and either ends with a question which involves only
literals (i.e. propositional variables and/or their negations) in the constituents
of the last question, or can be extended to such transformation. Now suppose
that S ` A is CPL-valid, but no Socratic transformation of the sequent via
the rules of E∗ is a Socratic proof. Consider an arbitrary but fixed Socratic
transformation of S ` A that ends with a question, Q#, which involves only
literals. Since the transformation is not a Socratic proof, at least one constituent
of Q# is not a basic sequent. But, as the CPL-formulas occurring in the se-
quent/constituent are literals, this yields that there is no literal that occurs on
both sides of the turnstile, and there is no propositional variable which occurs
together with its negation left to the turnstile. Hence, for obvious reasons, the
sequent is not CPL-valid. Now recall that the rules of E∗ (also) preserve joint
validity of sequents from top to bottom. Since it is not the case that all se-
quents/constituents of Q# are CPL-valid, the same holds true for any other
question of the transformation, the first question included. The first question,
?(S ` A), is based on a single sequent. Therefore the sequent S ` A is not
CPL-valid. We arrive at a contradiction. Hence S ` A has a Socratic proof in
E∗.

By Lemma 8.15 and Lemma 8.16 we get:

Theorem 8.17. A sequent is CPL-valid iff the sequent has a Socratic proof in
E∗.

For a detailed proof see Wísniewski (2004b).

Recall that the sequents considered above are single-conclusioned: they have
single CPL-formulas right to the turnstile and a finite (possibly empty) se-
quence of CPL-formulas left to the turnstile. Let us also stress that sequents
and questions are expressions of the object-level language L`cpl.

8.2.3 Other erotetic calculi

E∗ is only one of the erotetic calculi developed so far. There exist erotetic calculi
for First-order Logic (cf. Wísniewski and Shangin (2006)), some paraconsistent
propositional logics (cf. Wísniewski et al. (2005)), and for a wide class of modal
propositional logics (cf. Leszczyńska (2004), Leszczyńska (2007), Leszczyńska-
Jasion (2008), Leszczyńska-Jasion (2009)). In each case completeness theorems
are proven; in some cases decision procedures are described. However, erotetic
calculi for logics other than CPL require a more sophisticated languages. Gen-
erally speaking, their erotetic parts resemble that of L?

`cpl, but the declarative
parts are more complex.
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8.2.4 Erotetic calculi vs. sequent calculi

Socratic proofs can be transformed into Gentzen-style proofs in “parallel” se-
quent calculi. For example, the sequent calculus G∗ parallel to the erotetic
calculus E∗ has the following rules:

G∗Lα :
S ′ α1

′ α2
′ T ` C

S ′ α ′ T ` C
G∗Rα :

S ` α1 S ` α2

S ` α

G∗Lβ :
S ′ β1

′ T ` C S ′ β2
′ T ` C

S ′ β ′ T ` C
G∗Rβ :

S ′ β∗1 ` β2
S ` β

G∗L¬¬ :
S ′ A ′ T ` B

S ′ ¬¬A ′ T ` B
G∗R¬¬ :

S ` A
S ` ¬¬A

Axioms of the calculus are the basic sequents specified in Definition 8.10. Cal-
culus G∗ provides a sound and complete formalization of CPL.5 Again, the
sequents operated with have sequences of formulas left to the turnstile and
single formulas right to the turnstile. On the other hand, G∗ has no primary
structural rules. A translation of a Socratic proof in E∗ into a proof in G∗ can
be made algorithmically; the same pertains to the erotetic calculus for FoL and
its parallel sequent calculus. For details see Leszczyńska-Jasion et al. (2013).

Finally, let us clarify the following. One can suspect that an erotetic calculus
is, in essence, nothing more than a sequent calculus presented upside-down and
ornamented with question marks. This is clearly wrong. For example, take the
usual rule for the introduction of a disjunction and its reverse:

S ` A
S ` A ∨B

S ` A ∨B
S ` A

One cannot say that an inference from ?(S ` A) to ?(S ` A ∨B) is valid, and
similarly for an inference from ?(S ` A ∨ B) to ?(S ` A).6 More importantly,
CPL-validity of S ` A∨B does not warrant CPL-validity of S ` A. For instance,
p ` q ∨ p is valid, but p ` q is not.

There are close affinities between erotetic calculi and sequent calculi with
semantically reversible rules.7 Both enable a modelling of “equivalence reason-
ing” in proof-search. The former, however, conceives proof-search as a Socratic
transformation performed in an object-level language. Yet, one cannot take any
sequent calculus and then, by syntactic tricks, turn it into an erotetic calculus.

8.2.5 Internal question processing

The received view on question asking and answering favours a dyadic account.
It is assumed that there are two parties, a questioner and an answerer. The

5 Cf. Wísniewski (2004b) or Leszczyńska-Jasion et al. (2013).
6 Because ng(S ` A ∨ B) entails (in L?

`cpl) neither S ` A nor ng(S ` A). Similarly,
ng(S ` A) entails neither S ` A ∨B nor ng(S ` A ∨B).

7 For the latter see Rasiowa and Sikorski (1963), and Negri and von Plato (2001).
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former asks a question, whereas the role of the latter is to provide an answer to
the question. The parties are defined by their roles and, in some cases, both roles
can be played, consecutively, by the same agent; the phenomenon of “asking
questions to myself” is a case in point here. Moreover, an answerer need not
be a human: even eliciting information from Nature is sometimes modelled in
the dyadic perspective.8

However, the above account neglects the phenomenon of internal question
processing. When an agent is supposed to answer a question or solve a problem,
but he/she cannot accomplish the task by means of informational resources
which are directly accessible to him/her, it often happens that he/she internally
processes the initial question. The outcome is either a new question concerning
the subject matter or a preliminary strategy of reducing the initial question
into auxiliary questions. In both cases erotetic inferences play a substantial
role. When answers to questions raised are still inaccessible, the process goes
further in an analogous way, possibly with the help of data just collected.

Internal question processing (hereafter: IQP) can be ultimate or distributed.

It happens that one arrives at a satisfactory answer without sending requests
for additional information. The initial question is transformed into another
question, which, if necessary, is transformed further in an analogous way, etc.
Consecutive questions clarify the initial problem step by step. The process ends
with arriving at a question whose answer is well-known. We coin this type of
IQP with the label ultimate.

Erotetic calculi enable formal modelling of ultimate IQP. Of course, their
area of applicability is restricted to logical problems/questions.

As long as ultimate IQP is concerned, no requests for information are sent,
because no additional information is needed. In the case of distributed IQP
requests for additional information are sent, and questions are transformed
into further questions depending on how previous information requests have
been fulfilled.

Distributed IQP can be modelled in terms of erotetic search scenarios. We
address this issue in the consecutive chapters.

8 Cf. Hintikka (1999), Hintikka (2007); see also the next chapter.
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E-scenarios

9.1 Erotetic Decomposition Principle

It happens quite often that in order to answer a principal question we have
to ask and answer some auxiliary or “operative” questions. Answering them
usually amounts to consulting an external source of information (a fellow in-
quirer, a database, a spouse, etc.). Sometimes new experiments or observations
are needed; sometimes the relevant answers belong to our knowledge, but are
not taken into account at the moment of asking the principal question. Any-
way, auxiliary questions have to be good questions asked at the right time.
This idea is intelligible in almost every particular case, but hard to explicate
in general. Clearly, answers to auxiliary questions must contribute to the pro-
cess of finding the right answer to the principal question. Moreover, the order
in which the auxiliary questions are asked is important, since the answers re-
ceived to previously asked questions determine what further questions (if any)
are needed. And, last but not least, finding the right answer to an auxiliary
question must be less difficult than finding the right answer to the principal
question. But these are almost slogans; providing satisfactory explications of
the relevant concepts constitutes a serious challenge. What is even more chal-
lenging is to provide a formal account of questioning that both makes precise
and produces implementations of the following:

(EDP) (Erotetic Decomposition Principle): Transform a principal question
into auxiliary questions in such a way that: (a) consecutive auxiliary ques-
tions are dependent upon previous questions and, possibly, answers to pre-
vious auxiliary questions, and (b) once auxiliary questions are resolved, the
principal question is resolved as well.

9.1.1 Interrogative Model of Inquiry

Jaakko Hintikka and his collaborators paid a great deal of attention to the
problems mentioned above. In a series of papers published in the eighties and
nineties (of the 20th century) the so-called Interrogative Model of Inquiry (IMI)
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is developed.1 The concept of interrogative game is a central concept of IMI.
An interrogative game is played by two parties: an Inquirer and an external
source of information, called Nature or Oracle. In the simplest case the aim
of a game is to prove a predetermined conclusion, which is an answer to the
principal question. In a slightly more complicated case the aim is to prove at
least one among previously specified sentences, which are regarded as possible
answers to the principal question. Such a game is conceived as consisting of
separate games, which are simple games for consecutive answers. Sometimes
the aim of an interrogative game is to prove the desideratum of the principal
question; a desideratum of a question is, roughly speaking, a proposition which
specifies the cognitive state of affairs which the Inquirer wants to be brought
about. The situation is more complicated in the context of why-questions, but
this does not concern us here. In each case it is assumed that the Inquirer has at
his/her disposal some initial premises. The Inquirer can perform moves of the
following kinds: (a) deductive moves, in which conclusions are drawn from what
has already been established; (b) interrogative moves, in which auxiliary ques-
tions are addressed to a source of information (the answers received are added
to the premises and thus can be used in further deductive moves); (c) “defini-
tory” moves, in which new concepts are introduced by explicit definitions; (d)
assertoric moves, in which the conclusion to be proved is strengthened (moves
of the third and fourth kind occur only in more sophisticated games). The only
restriction imposed on questions which may occur in interrogative moves is that
the presuppositions of these questions have to be established, i.e. must be con-
clusions of some earlier deductive move(s) or belong to the initial premises. In
different variants of IMI different restrictions are imposed on the accessibility
and reliability of answers to the (potential) operative questions. The Inquirer
is free to choose between a deductive move and an interrogative move: he/she
can either use the (already obtained) presupposition of a question as a premise
in a deductive move or can ask the corresponding question and (possibly) re-
ceive new information, which may be used in further derivation(s). The choice
between moves as well as the choice between admissible questions is a matter
of strategy; interrogative games are called games not in order to use the math-
ematical results of game theory, but to do justice to the importance of research
strategies, modelled in IMI by different questioning strategies.

The following feature of IMI has to be stressed: the deductive moves are
the only inferential moves of an interrogative game, and both premises and
conclusions of the inferences are declarative sentences/d-wffs. Questions do not
perform the roles of premises and conclusions. They are devices by means of
which new relevant information comes into play (of course, with the exception
of the principal question, which specifies the aim of the game).

1 The papers are collected in Hintikka (1999). For IMI see also, e.g., Hintikka et al.
(2002), and Hintikka (2007).
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9.2 E-scenarios: intuitions

IEL addresses issues related to the Erotetic Decomposition Principle in many
ways. In the case of ultimate internal question processing erotetic rules and So-
cratic transformations are means of decomposition (see Chapter 8). As for dis-
tributed internal question processing, IEL operates with the concept of erotetic
search scenario (e-scenario for short).

In order to show what e-scenarios are let us start with three stories.

9.2.1 First story

Let us imagine a detective who is trying to keep track of a certain criminal,
named Andrew. The detective looks for the answer to the question:

What was the destination of Andrew’s flight: (9.1)

London, Paris, Moscow, or Rome?

on the basis of the following pieces of information:

The destination was London or Paris if and only if (9.2)

Andrew departed in the morning.

The destination was Rome or Moscow if and only if (9.3)

Andrew departed in the evening.

If Andrew flew by BA, then the destination was (9.4)

neither Paris nor Rome.

If the destination was either London or Moscow, (9.5)

then Andrew flew by BA.

Clearly, (9.2) – (9.5) are insufficient in order to resolve (9.1). So new information
is needed. How can the detective proceed now?

One possibility is to design the following search scenario:

“First, I will ask:

When did Andrew depart: in the morning, or in the evening? (9.6)

If it occurs that Andrew departed in the morning, I will ask:

Did Andrew fly by BA in the morning? (9.7)

If, however, it occurs that Andrew departed in the evening, I will ask:

Did Andrew fly by BA in the evening?” (9.8)

What is the rationale of the scenario? Each direct answer to (9.6), if received,
leaves the detective with two “positive” options instead of the initial four. If
Andrew departed in the morning, then, by (9.2), the destination was London
or Paris; if in the evening, then, by (9.3), either Rome or Moscow was the
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destination. On the other hand, if the initial options are only London, Paris,
Rome, and Moscow, then, by (9.2) and (9.3), Andrew departed either in the
morning or in the evening. When the relevant options are reduced to London
and Paris, each answer to question (9.6) would give a further reduction. For
if Andrew flew by BA in the morning, then, by (9.4), the destination was not
Paris and therefore it was London. If Andrew did not fly by BA in the morning,
then, by (9.5), London is not the case and hence Paris is. Similarly, when Rome
and Moscow are the options to be considered, the affirmative answer to question
(9.7), together with premise (9.4), would exclude Moscow and thus give Rome.
The negative answer to (9.7), along with premise (9.5), would exclude Rome
and hence give Moscow as the outcome.

Figure 9.1 summarizes the case.

What was the destination of Andrew’s flight: London, Paris, Moscow, or Rome?
The destination was London or Paris iff Andrew departed in the morning.
The destination was Rome or Moscow iff Andrew departed in the evening.
If Andrew flew by BA, then the destination was neither Paris nor Rome.

If the destination was either London or Moscow, then Andrew flew by BA.
When did Andrew depart: in the morning, or in the evening?

Andrew departed in the morning.
The destination was London or Paris.

Did Andrew fly by
BA in the morning?

Yes.
The destination

was London.

No.
The destination

was Paris.

Andrew departed in the evening.
The destination was Moscow or Rome.

Did Andrew fly by
BA in the evening?

Yes.
The destination

was Moscow.

No.
The destination

was Rome.

Fig. 9.1. First story: the search scenario.

The above scenario consists of four paths or branches. Note that each path
satisfies the following conditions:

(1) it begins with the principal question and ends with a direct answer to it;
(2) each declarative sentence involved:2

• is an initial premise, or
• is a direct answer to an auxiliary question that immediately precedes it

on the path, or
• is entailed by some declarative sentence(s) which occur(s) earlier on the

path

2 The short answers “Yes” and “No” are construed as representing the relevant direct
answers.
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(3) each auxiliary question involved is implied, in the sense of IEL, by some
question and declarative sentence(s) that occur earlier on the path.

As a matter of fact, question (9.6) is implied by question (9.1) on the basis
of the (set of) sentences (9.2) and (9.3). Question (9.7) is implied by question
(9.1) on the basis of “The destination was either London or Paris”, sentence
(9.4), and sentence (9.5). Similarly, question (9.8) is implied by question (9.1)
on the basis of “The destination was either Rome or Moscow”, sentence (9.4),
and sentence (9.5).3

The scenario as a whole satisfies the following conditions:

(a) no direct answer to the principal question belongs to the set of initial
premises;

(b) if an auxiliary question is immediately followed, on a given path, by a direct
answer to it, then the scenario contains path(s) on which this question is
immediately followed by all the other direct answers to the question; these
paths are identical up to the point at which the auxiliary question occurs,
but start to differ at the level of answers to the auxiliary question;

(c) only auxiliary questions have more that one immediate successor.

9.2.2 Second story

Let us come back to the detective who was the character in the first story. Now
let us imagine that he is looking for the answer to the question:

Where did Andrew leave for: Paris, London or Rome? (9.9)

This time, however, he makes use of the following initial premises:

Andrew left for Paris, London or Rome. (9.10)

If Andrew flew by Air France, then he left for Paris. (9.11)

If Andrew did not fly by Air France, then he did not leave for Rome. (9.12)

Andrew left for London if and only if he flew by BA or Rynair. (9.13)

An option for the detective is to design and then implement a scenario depicted
in Figure 9.2.

The scenario fulfils all the conditions (1), (2), (3), (a), (b), and (c) specified
in the previous section. In particular, each auxiliary question is an IEL-implied
question.4

3 Observe that (9.7) is also implied by (9.1) on the basis of the set of initial premises
supplemented with the answer “Andrew departed in the morning” to question
(9.6). Similarly in the case of question (9.8), but with respect to the second answer
to question (9.6).

4 Assuming Classical Logic as the background.
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Where did Andrew leave for: Paris, London, or Rome?
Andrew left for Paris, London or Rome.

If Andrew flew by Air France, then he left for Paris.
If Andrew did not fly by Air France, then he did not leave for Rome.

Andrew left for London if and only if he flew by BA or Rynair.
Did Andrew fly by Air France?

Yes.
Andrew left for Paris.

No.
Andrew did not leave for Rome.

Andrew left for Paris or London.
Did Andrew leave for London?

Did Andrew fly by BA, or by Rynair,
or by neither?

Did Andrew fly by BA?

Yes.
Andrew left for London.

No.
Did Andrew fly by Rynair?

Yes.
Andrew left
for London.

No.
Andrew left
for Paris.

Fig. 9.2. Second story: the search scenario.

The question:
Did Andrew fly by Air France? (9.14)

is (erotetically) implied by question (9.9) on the basis of the sentences (9.10),
(9.11), and (9.12). For if Andrew flew by Air France, then, by (9.11), he left for
Paris. If, however, Andrew did not fly by Air France, then, by (9.12), he did
not leave for Rome and hence, by (9.10), he left either for Paris or for London.

The question:
Did Andrew leave for London? (9.15)

is, obviously, implied by question (9.9) on the basis of “Andrew left for Paris
or London.”

The consecutive question:

Did Andrew fly by BA, or by Rynair, or by neither? (9.16)

is implied by question (9.15) on the basis of (9.13).

Finally, any of the questions:

Did Andrew fly by BA? (9.17)

Did Andrew fly by Rynair? (9.18)
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is implied by question (9.16). To see this it suffices to observe that, taking
Classical Logic as the background, we have:

¬A ||= {B,¬A ∧ ¬B} (9.19)

¬B ||= {A,¬A ∧ ¬B} (9.20)

It is worth emphasizing that, unlike the previous scenario, the scenario
depicted in Figure 9.2 has some specific features. First, it is incomplete in the
sense that there is no path which leads to a certain (direct) answer to the
principal question, namely the answer “Andrew left for Rome”. Second, the
scenario involves auxiliary questions which are not followed by direct answers
to them – which do not function as queries – but serve as premises for further
questions only. In many cases such auxiliary questions are indispensable, since,
as we have shown in Chapter 7, sections 7.3.2 and 7.5.2, erotetic implication is
not “transitive”. As for the scenario considered, in order to arrive at questions
(9.17) and (9.18) one needs a transition from question (9.15) to question (9.16)
as a necessary step.

9.2.3 Third story

Our third story will be presented in more abstract terms.

Suppose that one is looking for the answer to a question of the form:

Is it the case that p, or is it the case that q, or is it the case that r? (9.21)

Suppose further that it is known that p holds if s holds, and that either q or r
holds if ¬s holds. In this situation one arrives at the question:

Is it the case that s? (9.22)

What can happen next? It depends on the epistemic situation. If the request
for information will be satisfied by s, the answer p to the initial question is
found. If, however, the request will be satisfied by ¬s, the initial question
transforms into the question:

Is it the case that q, or is it the case that r? (9.23)

Now suppose that it is also known that q holds if, and only if u holds. In
this situation one arrives at the question:

Is it the case that u? (9.24)

If this request for information will be satisfied by u, one gets the answer q to
the principal question. If the outcome will be ¬u, one gets r, since if u does
not hold, q does not hold either, and, as q ∨ r holds, r must hold.

We have told the story in epistemic terms. Let us now look, however, at the
underlying structure displayed in Figure 9.3: 5

5 We have used language L?
cpl as the mean of formalization.
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?{p, q, r}
s→ p

¬s→ q ∨ r
q ↔ u

?s

s
p

¬s
? {q, r}

?u

u
q

¬u
r

Fig. 9.3. Third story: the search scenario.

Figure 9.3 depicts the corresponding e-scenario. It has the form of a tree and
is of course completely domain-unspecific. Needless to say, the conditions (1) –
(3) and (a) – (c) specified in section 9.2.1 are satisfied.

9.3 E-scenarios: definitions

Erotetic search scenarios (e-scenarios for short) are abstract entities defined in
terms of IEL. They can be defined in two equivalent ways: (a) as families of
interconnected e-derivations of answers to principal questions (see Wísniewski
(2001), Wísniewski (2003)), or (b) as labelled trees. In what follows we will
present both definitions. We start with the first option, because this step sim-
plifies the metatheoretical considerations.

Our logical basis is just the logical basis of IEL. To be more precise, we as-
sume that we deal with a formal language with questions, L, which satisfies the
conditions specified in section 5.4 of Chapter 5. The language is supplemented
with a semantics characterized in Chapters 3 and 4, with the concept of admis-
sible partition as the basic one. The conceptual apparatus of IEL introduced
in Chapters 6 and 7 is used accordingly. For brevity, we omit the specifications
“in L” and “of L”.

Terminology and notation. By wffs of L we mean d-wffs of L and questions
of L. We use s1, s2, . . . , t1, t2, . . ., with or without superscripts, as metalan-
guage variables for wffs of the language. When we write dsi, we assume that
si is a question and we refer to the set of direct answers to si.

9.3.1 Erotetic derivations

We need the following auxiliary concept.

Definition 9.1 (E-derivation). A finite sequence s = s1, . . . , sn of wffs is an
erotetic derivation (e-derivation for short) of a direct answer A to question
Q on the basis of a set of d-wffs X iff s1 = Q, sn = A, and the following
conditions hold:
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1. for each question sk of s such that k > 1:
a. dsk 6= dQ,
b. sk is implied by a certain question sj which precedes sk in s on the basis

of the empty set, or on the basis of a non-empty set of d-wffs such that
each element of this set precedes sk in s, and

c. sk+1 is either a direct answer to sk or a question;

2. for each d-wff si of s:
a. si ∈ X, or
b. si is a direct answer to si−1, where si−1 6= Q, or
c. si is entailed by a certain non-empty set of d-wffs such that each element

of this set precedes si in s;

Note that by “precedes” we do not mean “immediately precedes”.

If s = s1, . . . , sn is an e-derivation of a direct answer to question Q on the
basis of X, each question of s different from Q is called an auxiliary question
of s, the elements of X are called initial d-wffs, and the elements of X which
occur in s are called initial premises of the e-derivation.

Some comments are in order. An e-derivation is goal-directed : it begins
with a principal question and ends with a direct answer to the question. The
remaining items are either d-wffs or auxiliary questions. Clause (1a) requires
that no auxiliary question has the same set of direct answers as the principal
question (i.e. question Q). It follows that no auxiliary question is a simple
reformulation of the principal one. Clause (1b) amounts to the requirement that
each question of an e-derivation different from the principal one must be implied
(in the sense of erotetic implication) by some earlier item(s) of the e-derivation.
Clause (1c), in turn, requires than an auxiliary question must be immediately
succeeded either by a direct answer to it or by a further auxiliary question.
According to clause (2), d-wffs may enter e-derivations for three reasons: as
initial d-wffs, as direct answers to auxiliary questions (in this case they occur
just after the relevant questions), or as consequences of earlier d-wffs. Let us
stress that, by the clause (2b), a direct answer to an auxiliary question (but
not to the principal question!) may enter an e-derivation even if this answer
neither belongs to the set of initial d-wffs X nor is entailed by some earlier
item(s) of the derivation.6

Let us stress that e-derivations in our sense differ substantially from
Hintikka’s “interrogative derivations”.7 Harrah sometimes uses the term “e-
derivation” (but not “erotetic derivation”), but he understands this term in a
way different from ours and uses it for different reasons.8

6 But observe that, by clause (2b), a question-answer sequence Q,A is an e-derivation
of the answer A if, and only if A is an element of the relevant X, that is, is an
initial d-wff. Clause (2b) allows for a “free introduction” of a direct answer only
with respect to auxiliary questions.

7 Cf. the papers included in Hintikka (1999), or the paper Hintikka et al. (2002).
8 Cf. Harrah (1981), and Harrah (2002). Roughly, e-derivations in Harrah’s sense

break down compounds (non-atomic wffs made up from e-formulas and possibly
d-wffs), which is an important procedure in Harrah’s formal theory of message and
reply as well as in his General Erotetic Logic.
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Queries of e-derivations

There are e-derivations which involve only one question, that is, the principal
one. But there are also e-derivations which contain more than one question; we
shall call them interrogatively non-trivial. Note that interrogatively non-trivial
e-derivations must involve queries, i.e. auxiliary questions immediately followed
by direct answers to them.

Definition 9.2 (Query of e-derivation). A term sk (where 1 < k < n) of an
e-derivation s = s1, . . . , sn is a query of s if sk is a question and sk+1 is a
direct answer to sk.

Queries are thus defined syntactically. However, the underlying intuition is:
queries of an e-derivation are these auxiliary questions which are “asked and
then answered” in it.

We do not require each auxiliary question to be a query. There are
e-derivations which involve auxiliary questions that are not queries.

Here are examples of e-derivations:

?{p, q, r}, s→ p,¬s→ q ∨ r, q ↔ u, ?s, s, p (9.25)

?{p, q, r}, s→ p,¬s→ q ∨ r, q ↔ u, ?s,¬s, ?{q, r}, ?u, u, q (9.26)

?{p, q, r}, s→ p,¬s→ q ∨ r, q ↔ u, ?s,¬s, ?{q, r}, ?u,¬u, r (9.27)

Question ?s is the only query of (9.25). Questions ?s and ?u are queries of
(9.26) as well as of (9.27), while question ?{q, r} is an auxiliary question which
is not a query. Clause (1b) of Definition 9.1 is fulfilled because the following
hold in L?

cpl:
Im(?{p, q, r}, s→ p,¬s→ q ∨ r, ?s) (9.28)

Im(?{q, r},¬s→ q ∨ r,¬s, q ↔ u, ?u) (9.29)

Observe that (9.25), (9.26), and (9.27) are sequences of labels of the consec-
utive branches of the tree displayed in Figure 9.3. This is not by an accident;
we will come back to this issue in a moment.

Epistemic justification and minimal error points

Let s be an e-derivation of a direct answer A to question Q on the basis of X.
If s involves no query, then each d-wff of s, the answer A included, is true in
any admissible partition in which all the d-wffs in X are true. But if s involves
a query or queries, the situation may be different, since a d-wff may enter s
only because it is a direct answer to a query and there is nothing in Definition
9.1 that prevents us from introducing a false answer. So a mere existence of an
e-derivation of a direct answer A to Q on the basis of X is not epistemically rel-
evant; one cannot say that such a derivation is an “interrogative” or “erotetic”
proof of A from X (even if all the elements of X are properly justified). An
e-derivation becomes epistemically relevant when all the declarative premises
used in it (answers to queries included!) are properly justified.
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Observe that an e-derivation which starts with a sound question, is based
on true initial premises, involves at least one query and includes a false d-wff
or an unsound question has a minimal error point being an index of an answer
to a query. One can easily prove the following:

Lemma 9.3. Let s = s1, . . . , sn be an e-derivation of a direct answer A to
question Q on the basis of a set of d-wffs X. Assume that s involves at least
one query. Let P be an admissible partition such that all the d-wffs in X are
true in P, and Q is sound in P. If at least one d-wff of s is false in P, or at
least one question of s is unsound in P, then there exists an index i (1 < i ≤ n)
such that:

1. si is false in P and si is a direct answer to si−1, and
2. each question which occurs in s before si is sound in P, and
3. each d-wff which occurs in s before si is true in P.

Lemma 9.3 will be used in section 9.4 below.

9.3.2 E-scenarios as families of e-derivations

E-scenarios can be defined, first, as families of interconnected e-derivations.
Here is the definition.

Definition 9.4 (E-scenario). A finite family Σ of sequences of wffs is an
erotetic search scenario (e-scenario for short) for a question Q relative to a
set of d-wffs X iff each element of Σ is an e-derivation of a direct answer to
Q on the basis of X and the following conditions hold:

1. dQ ∩X = ∅;
2. Σ contains at least two elements;

3. for each element s = s1, . . . , sn of Σ, for each index k, where 1 ≤ k < n:

a. if sk is a question and sk+1 is a direct answer to sk, then for each
direct answer B to sk: the family Σ contains a certain e-derivation
s∗ = s∗1, s

∗
2, . . . , s

∗
m such that sj = s∗j for j = 1, . . . , k, and s∗k+1 = B;

b. if sk is a d-wff, or sk is a question and sk+1 is not a direct answer to sk,
then for each e-derivation s∗ = s∗1, s

∗
2, . . . , s

∗
m in Σ such that sj = s∗j

for j = 1, . . . , k we have sk+1 = s∗k+1.

The e-derivations which are elements of an erotetic search scenario Σ for Q
relative to X will be called paths of Σ, the question Q will be called the principal
question of Σ, and any other question of Σ is called an auxiliary question of
the e-scenario. The relevant set X will be referred to as the background, and
the elements of X which occur in Σ will be called initial premises of Σ. If a
path s of Σ has a direct answer A to Q as its last term, we say that s leads to
A.

Definition 9.5 (Query of e-scenario). A query of an e-scenario is a query of
a path of the e-scenario.
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A quick look at definitions 9.2 and 9.1 gives the following: a query of an
e-scenario is simply the first element of a question-answer pair that occurs
on a path of the e-scenario, where the question is an auxiliary one and the
answer immediately succeeds the question. Thus each query is a question, but
e-scenarios can involve auxiliary questions that are not queries.

Let us now comment on Definition 9.4.

Clause (2) requires an e-scenario to comprise at least two (properly intercon-
nected) e-derivations of direct answer(s) to the principal question. For obvious
reasons, it is assumed (and required by clause (1)) that no direct answer to a
principal question simply belongs to the background.

Clause (3a) expresses the idea of fairness with respect to queries: if A is
an answer to a query that immediately succeeds the query on a path s of an
e-scenario Σ, then for any direct answer B to the query that is different from
A there exists a path s∗ of Σ which is identical with s to the level of the query,
and then has B as the immediate successor of the query. Thus, roughly, for
any path and any query on that path there exists a cluster of related paths
which share the query and its predecessors, but diverge with respect to the
direct answers to the query. Moreover, each direct answer to a query is “used”
at some path of the cluster. Or, to put it differently, each direct answer to a
query contributes to some path and thus to a derivation of an answer to the
principal question: there are no “dead ends”.

Clause (3b), in turn, expresses the idea of regularity : if sk (k < n) is a d-wff
of a path s = s1, . . . , sn, or sk is a question of s that is not a query, then each
path which is identical with s to the level of sk has the wff sk+1 as the k+ 1st
term. In other words, d-wffs as well as questions that are not queries are “used”
within a cluster of related paths in an uniform manner. Hence only queries are
“branching points” of e-scenarios. For answers to queries we have:

Corollary 9.6. Let s = s1, . . . , sn be a path of an e-scenario Σ, and sk be
a query of s. Let s∗ = s∗1, . . . , s

∗
m be a path of Σ such that s∗i = si for

i = 1, . . . , k + 1. Then s∗k+2 = sk+2 given that k + 1 < n. Moreover, if sw is
the next query of s, then s∗j = sj for j = k + 2, . . . , w. If, however, sk is the
last query of s, then s∗ = s.

Since e-scenarios are supposed to be finite sets, by clause (3a) of Definition
9.4 we get:

Corollary 9.7. Each query of an e-scenario is a question with a finite number
of direct answers.

Recall that, in view of the general setting adopted, each question has at
least two direct answers.

Note that it is permitted that principal questions and auxiliary questions
that are not queries have infinitely many direct answers.

We also have:

Corollary 9.8. Each path of an e-scenario involves at least one query.
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Proof. Assume that there is a path, say, s, of an e-scenario Σ such that s
involves no query. As an e-scenario, Σ has at least two elements. Moreover,
dQ ∩ X = ∅ and thus the second term of s is not a direct answer to Q. By
clause (3b) of Definition 9.4, the second term of any path of Σ is equal to the
second term of s. Yet, since s involves no query, then, by clause (3b) again, the
consecutive terms of any path of Σ are equal to the corresponding terms of s.
Therefore Σ is a singleton set. A contradiction. ut

Each e-scenario has the first query, shared by all the paths of the scenario.
More precisely, the following holds:

Corollary 9.9. Let Σ be an e-scenario for Q relative to X. There exist an
index k > 1 and a question Q∗ such that:

1. Q∗ is the k-th term of every path of Σ,
2. the k-th term of a path of Σ is a query of the path and hence of Σ,
3. k is the least index of a query of Σ.

Proof. By Corollary 9.8, each path of Σ involves at least one query. Queries are
terms of paths and hence any query has an index. For each path there exists
the least index of a query of the path. Consider the set MqiΣ of the least indices
of queries of Σ. Since e-scenarios are finite sets, MqiΣ is finite and hence has
a minimal element, say, k. In other words, no query of Σ has an index lower
than k. Clearly k > 1. Let s = s1, . . . , sn be a path of Σ whose least index of a
query is k. Assume that k = 2. Therefore, by clause (3b) of Definition 9.4, the
question s2 occurs as the second term of any path of Σ, and, by clause (3a) of
the definition, is a query of every path of Σ. Now assume that k > 2. Suppose
that there exists a path, s′, of Σ such that the least index of a query of s′ is
k and s′j 6= sj for some 2 < j ≤ k. For each i, where 1 < i < k, s′i is either
a d-wff or an auxiliary question which is not a query. Hence, by clause (3b)
of Definition 9.4, s′i = si for any i < k. It follows, again by the clause (3b),
that s′k = sk. A contradiction. Hence the question sk is a query of each path
of Σ. ut

Note that it is not assumed that paths of e-scenarios are sequences without
repetitions. Moreover, as we will see, there are cases in which it is intuitive to
allow for multiple occurrence(s) of questions and/or d-wffs, although at different
paths.

It is obvious that e-scenarios can be displayed in the form of diagrams
showing downward trees; the paths of an e-scenario are represented by the
branches of a tree (i.e. maximal paths of the tree).

9.3.3 E-scenarios as labelled trees

E-scenarios can also be viewed as labelled trees, where the labels are d-wffs and
questions. It can be shown that e-scenarios defined as families of e-derivations
and as labelled trees stay in a 1-1 correspondence (see Leszczyńska-Jasion
(2013)).



116 9 E-scenarios

Definition 9.10. A finite labelled tree Φ is an erotetic search scenario for a
question Q relative to a set of d-wffs X iff

1. the nodes of Φ are labelled by questions and d-wffs; they are called e-nodes
and d-nodes, respectively;

2. Q labels the root of Φ;
3. each leaf of Φ is labelled by a direct answer to Q;
4. dQ ∩X = ∅;
5. for each d-node γδ of Φ: if A is the label of γδ, then

a. A ∈ X, or
b. A ∈ dQ∗, where Q∗ 6= Q and Q∗ labels the immediate predecessor of γδ,

or
c. {B1, ..., Bn} |= A, where Bi (1 ≤ i ≤ n) labels a d-node of Φ that precedes

the d-node γδ in Φ;
6. each d-node of Φ has at most one immediate successor;
7. there exists at least one e-node of Φ which is different from the root;
8. for each e-node γε of Φ different from the root: if Q∗ is the label of γε, then

dQ∗ 6= dQ and
a. Im(Q∗∗, Q∗) or Im(Q∗∗, B1, ..., Bn, Q

∗), where Q∗∗ labels an e-node of
Φ that precedes γε in Φ and Bi (1 ≤ i ≤ n) labels a d-node of Φ that
precedes γε in Φ, and

b. an immediate successor of γε is either an e-node or is a d-node labelled
by a direct answer to the question that labels γε, moreover:
• if an immediate successor of γε is an e-node, it is the only immediate

successor of γε,
• if an immediate successor of γε is not an e-node, then for each

direct answer to the question that labels γε there exists exactly one
immediate successor of γε labelled by the answer.

A query of an e-scenario Φ can be defined as a question that labels an e-
node of Φ which is different from the root and whose immediate successor is
not an e-node. Paths of e-scenarios can be identified with downward sequences
of labels of nodes of branches, that is, sequences having the principal question
as the first term and direct answers to the question as last terms.

In what follows we will, primarily, construe e-scenarios as families of
e-derivations, that is, according to Definition 9.4.

9.4 The Golden Path Theorem

The following theorem characterizes an interesting property of e-scenarios:

Theorem 9.11 (Golden Path Theorem). Let Σ be an e-scenario for a ques-
tion Q relative to a set of d-wffs X. Assume that Q is sound in an admissible
partition P, and all the d-wffs in X are true in P. The e-scenario Σ contains
at least one path s such that:

1. each d-wff of s is true in P,
2. each question of s is sound in P, and
3. s leads to a direct answer to Q which is true in P.
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Proof. Let P be an arbitrary but fixed admissible partition such that Q is sound
in P and all the d-wffs in X are true in P. In what follows by “sound” we mean
“sound in P”, by “true” we mean “true in P”, and similarly for falsity.

By Corollary 9.8 each path of Σ involves at least one query. Suppose that
each path of Σ is fallacious, i.e. at least one d-wff on it is false or at least
one question on it is not sound. Thus by Lemma 9.3 each path of Σ has a
minimal error point, that is, for each path s of Σ there exists an index i such
that the i-th term of s is a false direct answer to a question which is the
(i − 1)-st term of s, and each d-wff/question which occurs in s before its i-th
term is true/sound. Let us consider the set MepΣ of minimal error points of
all the paths of Σ (MepΦ is of course the set of indices whose elements fulfil
the conditions specified above). Since Σ is a finite family of e-derivations, the
set MepΣ is finite and thus has a maximal element. So there exist an index
k (a maximal element of MepΣ) and an e-derivation s = s1, . . . , sn in Σ such
that for each j < k, sj is true/sound, sk is a false direct answer to sk−1, and
Σ contains no e-derivation whose k-th term is true/sound and all the previous
terms are true/sound. On the other hand, since sk−1 is sound, then at least one
direct answer to it is true. Thus, by clause (3a) of Definition 9.4, Σ contains
an e-derivation s∗ = s∗1, . . . , s

∗
m such that s∗j = sj for j = 1, . . . , k− 1 and s∗k is

a true direct answer to s∗k−1 (i.e. to sk−1). Since, by assumption, each path of
Σ is fallacious, it follows that the minimal error point of s∗ is greater than the
maximal element of the set MepΣ of minimal error points of all the paths of Σ.
We arrive at a contradiction. Therefore at least one path of Σ is not fallacious,
that is, each question which occurs on it is sound and each d-wff of it is true.
On the other hand, the last d-wff of a path of Σ is a direct answer to Q. ut

Theorem 9.11 says that an e-scenario contains at least one golden path if
the principal question is sound and all the d-wffs in the background are true.
Of course, by a golden path of an e-scenario we mean a path which involves
only sound questions and only true d-wffs, and which leads to a true direct
answer to the principal question of the scenario.

Remarks. Auxiliary questions of e-scenarios are required to be IEL-implied.
However, the only property of erotetic implication that is important for the
proof of the Golden Path Theorem is the “transmission of soundness/truth into
soundness” feature. The second basic feature of erotetic implication, the “open-
minded cognitive usefulness” property, safeguards local relevance of consecutive
auxiliary questions, while their global relevance is due to the fact that each path
of an e-scenario ends with a direct answer to the principal question.

9.5 A pragmatic account of e-scenarios

E-scenarios are abstract entities defined in terms of IEL. But, from a prag-
matic point of view, an e-scenario provides us with conditional instructions
which tell what auxiliary questions should be asked and when they should be
asked. Queries of e-scenarios can be viewed as requests for information. An
e-scenario shows what is the next advisable query if the information request of
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the previous query has been satisfied in such–and–such way. What is impor-
tant, an e-scenario does this with regard to any possible way of satisfying the
request, where the ways are determined by direct answers to the question which
functions as a query. Moreover, an e-scenario behaves in this manner in the case
of every query of the e-scenario. Thus the e-scenarios approach transcends the
common schema of “production of a sequence of questions and affirmations”,
and the fact that information requests can be satisfied in one way or another
is treated seriously.

Let us illustrate this by examples. Take the e-scenario displayed in Figure
9.4:9

?p
q → p

r → p

p→ q ∨ r
?{p,¬p, q}

?q

q
p

¬q
?{p,¬p, r}

?r

r
p

¬r
¬p

Fig. 9.4. An example of e-scenario for ?p.

In order to improve readability initial premises are shadowed, here and below.

Let us comment on the e-scenario depicted in Figure 9.4. Either of q and
r constitutes a sufficient condition for p, and their disjunction constitutes a
necessary condition for p. So it is advisable to ask first if one of them holds. If
it does, there is no need for a further question, and the initial issue is resolved
affirmatively. If not, it is advisable to ask whether the other holds. If it does, the
initial issue is resolved affirmatively again. If not, the issue is, finally, resolved
negatively.10

Now take the e-scenario displayed in Figure 9.5:

9 Again, we use the language L?
cpl (see Chapter 2, section 2.4.1) as the mean of

formalization.
10 Note that neither ?{p,¬p, q} nor ?{p,¬p, r} is a query. However, they are necessary

in the IEL-grounded transitions which lead to queries (see section 7.5.2 of Chapter
7). The e-scenarios depicted in Figures 9.4 and 9.5 are based on the examples
(7.30), (7.16), (7.31), (7.17) of erotetic implication given in sections 7.5.1 and 7.5.2
of Chapter 7.
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?p
p→ q

p→ r

q ∧ r → p

?{p,¬p,¬q}
?q

q
?{p,¬p,¬r}

?r

r
p

¬r
¬p

¬q
¬p

Fig. 9.5. Another example of e-scenario for ?p.

This time q and r are necessary conditions for p, and their conjunction
constitutes a sufficient condition for p. It is, first, advisable to ask whether
q holds. If q holds, it is advisable to ask whether r holds as well. If it does,
the problem is resolved affirmatively; otherwise it is resolved negatively. But
if the answer to the first query, that is, to ?q, is negative, the initial problem
is already resolved negatively and there is no reason for asking the remaining
query, i.e. ?r. Our next example, presented in Figure 9.6, is, as a matter of fact,
a formalization of the content of Figure 9.2, which summarized our “second
story” (see section 9.2.2).

?{p, q, r}
p ∨ q ∨ r
s→ p

¬s→ ¬r
q ↔ t ∨ u

?s

s
p

¬s
¬r
p ∨ q

?q
?{t, u,¬(t ∨ u)}

?t

t
q

¬t
?u

u
q

¬u
p

Fig. 9.6. An example of e-scenario for ?{p, q, r}.
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The following comments on Figure 9.6 are in order. The principal question
is ?{p, q, r}, so the task is accomplished when any of p, q, r is established. Given
the initial premises, it is advisable to ask first whether s holds. If it holds, p is
the case and there is no need for any further queries. If, however, ¬s is the case,
it is advisable to ask whether t holds. If t holds, q is the case and no further
query is needed. If, however, ¬t holds, it is advisable to ask whether u holds.
If u holds, q is the case; otherwise p is the case.

Let us now analyse some e-scenarios formulated in the language L?
fom (cf.

section 2.4.3 of Chapter 2). P, R, T are supposed to be (object-level!) predicates
of L?

fom , a, b, c are individual constants of the language, and x is an object-level
individual variable.

In constructing the e-scenarios depicted in Figures 9.7 and 9.8 we made use
of examples (7.50) and (7.35) of erotetic implication presented in section 7.5.2
of Chapter 7.

?S(Px)

∀x(Rx→ Px)

∃x(Rx ∧ (x = a ∨ x = b ∨ x = c))

?{Ra, Rb, Rc}

Ra

Pa

Rb

Pb

Rc

Pc

Fig. 9.7. An example of e-scenario for ?S(Px).

?S(Px)

∀x(Rx→ Px)

∃x(Rx ∧ (x = a ∨ x = b ∨ x = c))

?{Ra, Rb, Rc}
?Ra

Ra

Pa

¬Ra
?Rb

Rb

Pb

¬Rb
Rc

Pc

Fig. 9.8. Another example of an e-scenario for ?S(Px) .
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According to the e-scenario displayed in Figure 9.7, if one is looking for an
object having a property P, it is known that objects having property R have
the property P, and it is known that at least one of the objects (designated by)
a, b, c has the property R, it is advisable to ask which of a, b, c has the property
R. The e-scenario displayed in Figure 9.8 pertains to the same principal question
and relies upon identical initial premises, but is more sophisticated. It shows
that it is advisable to ask, first, whether object a has the property R. If so, it
occurs that object a has the property P and no further query is needed (since
the principal question is an existential which-question). If the answer to the
first query is negative, it is advisable to ask whether Rb holds. If the answer is
affirmative, we have Pb. If, however, the answer is negative, we get Pc. There
is no need for asking, in addition, whether Rc holds.

The e-scenario depicted in Figure 9.7 involves exactly one query which is
also the only auxiliary question of the e-scenario. The query is regularly implied
by the principal question on the basis of the initial premises. Note that when
we know that a question Q1 with a finite number of direct answers is regularly
implied by a question Q on the basis of a finite set of d-wffs X, and the set
does not include a direct answer to Q, we can always build an e-scenario whose
principal question is Q and the only query is Q1. Figure 9.9 presents another
example of an e-scenario of this kind.11 The pragmatic information provided

?{Pa, Pb}
∀x(Px↔ Rx ∧ Tx)

Ra

Tb

?{Rb, Ta}

Rb

Pb

Ta

Pa

Fig. 9.9. An example of e-scenario for ?{Pa, Pb}.

is: given the premises, it is advisable to ask which of the following, Rb or Ta,
holds.

Finally, let us consider the e-scenario displayed in Figure 9.10. It is is very
similar to, but not identical with that depicted in Figure 9.6. The difference
lies in the position of the initial premise q ↔ t ∨ u: now it occurs after the
first query and is not a term of the leftmost branch.12 The new pragmatic
information provided is the following: if you received the negative answer to
the first query and, in addition, it is known that q holds if, and only if either t
or u holds, it is advisable to ask whether t is the case. The first query does not

11 We make use of (7.34) from section 7.5.2 of Chapter 7.
12 However, erotetic implication is still retained, since we have Im(?q, q ↔ t ∨
u, ?{t, u,¬(t ∨ u)}).
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?{p, q, r}
p ∨ q ∨ r
s→ p

¬s→ ¬r
?s

s
p

¬s
¬r
p ∨ q

q ↔ t ∨ u
?q

?{t, u,¬(t ∨ u)}
?t

t
q

¬t
?u

u
q

¬u
p

Fig. 9.10. Another example of e-scenario for ?{p, q, r}.

rely on this additional information, but the consecutive queries are dependent
upon it.

A comment. Neither Definition 9.4 nor Definition 9.10 of e-scenarios require
all the initial premises to occur before the first query. E-scenarios which have
this property are said to be in the canonical form. As we have seen, e-scenarios
which are not in the canonical form can carry more pragmatic information than
these in the canonical form.

9.5.1 Compression and conciseness

Paths of e-scenarios are e-derivations and thus sequences of questions and d-
wffs. Recall that, according to Definition 9.1, a d-wff can enter a path for
three possible reasons: (a) as an initial premise taken from the background, (b)
as a (direct) answer to a query, or (c) as a consequence of a d-wff or d-wffs
introduced in the first and/or second manner. Note that d-wffs fulfilling the
condition (c) are, with the exception of last terms of paths, redundant. For, if
the last term of a path – a direct answer to the principal question – is entailed
by d-wffs introduced due to (a), (b), and (c), the answer is also entailed by the
respective d-wffs introduced according to (a) and (b), that is, by initial premises
and answers to queries. Moreover, erotetic implications would be retained even
if all the d-wffs introduced according to (c) were deleted. This is due to:

Corollary 9.12. If Im(Q,X ∪ {C}, Q1) and X |= C, then Im(Q,X,Q1).

Proof. It suffices to observe that when X |= C, then for each admissible parti-
tion P = 〈TP,UP〉 we have X ⊂ TP iff X ∪ {C} ⊂ TP. ut
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Hence if we compress an e-scenario, that is, we delete from it all the d-wffs
which are neither initial premises, nor answers to queries, nor last terms of
paths, we will receive an e-scenario.

?Pa

∀x(Px↔ Rx ∧ Tx)

?(Ra ∧ Ta)
?± |Ra, Ta|

?Ra

Ra

?Ta

Ta

Ra ∧ Ta

Pa

¬Ta
¬(Ra ∧ Ta)
¬Pa

¬Ra
¬(Ra ∧ Ta)
¬Pa

Fig. 9.11. An example of e-scenario for ?Pa.

?Pa

∀x(Px↔ Rx ∧ Tx)

?(Ra ∧ Ta)
?± |Ra, Ta|

?Ra

Ra

?Ta

Ta

Pa

¬Ta
¬Pa

¬Ra
¬Pa

Fig. 9.12. The compressed counterpart of the e-scenario presented in Figure 9.11.

Let us illustrate this by an example. Figure 9.11 presents an e-scenario that
involves “intermediate” d-wffs.13 Figure 9.12 shows its compressed counterpart.

Note that compressed counterparts of e-scenarios carry analogous informa-
tion on preconditions of queries as the original e-scenarios.

Let us introduce the following concept:

Definition 9.13 (Concise e-scenario). An e-scenario Σ for Q relative to X
is concise iff each d-wff that is a term of a path of Σ is: (a) an element of X,

13 Namely, Ra ∧ Ta and ¬(Ra ∧ Ta). Erotetic implication is retained due to (7.32),
(7.13) and (7.8) (see section 7.5.2 of Chapter 7).
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or (b) a direct answer to a query of the path that occurs immediately after the
query on the path, or (c) a direct answer to Q which is the last term of the
path.

Compressed counterparts of e-scenarios are concise. There exist e-scenarios
which are already concise and thus are not subjected to a compression. The
e-scenarios displayed in Figures 9.3, 9.4, 9.5, 9.7, 9.9 are of this kind.

9.5.2 Imperative counterparts of e-scenarios

From a pragmatic point of view, auxiliary questions that are not queries are
irrelevant. If we delete them from an e-scenario, we receive the imperative coun-
terpart of the initial e-scenario. Figure 9.13 shows the imperative counterpart
of the e-scenario displayed in Figure 9.11. Figure 9.14, in turn, depicts the
imperative counterpart of e-scenario displayed in figure 9.5.

?Pa

∀x(Px↔ Rx ∧ Tx)

?Ra

Ra

?Ta

Ta

Pa

¬Ta
¬Pa

¬Ra
¬Pa

Fig. 9.13. The imperative counterpart of the e-scenario presented in Figure 9.12.

?p
p→ q

p→ r

q ∧ r → p

?q

q
?r

r
p

¬r
¬p

¬q
¬p

Fig. 9.14. The imperative counterpart of the e-scenario displayed in Figure 9.5.

If each auxiliary question of an e-scenario is a query, its imperative coun-
terpart can be identified with the e-scenario itself. Thus Figures 9.7 and 9.9
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can be also regarded as displaying the imperative counterparts of the relevant
e-scenarios.

Since erotetic implication is not “transitive”, the imperative counterpart
of an e-scenario need not be an e-scenario itself. But imperative counterparts
are carriers of the same pragmatic information as the initial e-scenarios: they
characterize preconditions of consecutive queries, in particular preconditions
being answers to previous queries.

Although imperative counterparts of e-scenarios need not be e-scenarios,
they retain the golden path property. One can easily prove that the analogue
of the Golden Path Theorem holds for imperative counterparts.
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Some Special Kinds of E-scenarios

In this chapter we distinguish some categories of e-scenarios which seem most
important from the point of view of possible applications.

10.1 Complete and incomplete e-scenarios

The paths of an e-scenario end with direct answers to the principal question.
However, Definition 9.4 does not require each direct answer to the principal
question to be the endpoint of a path. Thus we can distinguish between com-
plete and incomplete e-scenarios.

Definition 10.1 (Complete e-scenario). An e-scenario Σ for Q relative to X
is complete if each direct answer to Q is the last term of a path of Σ; otherwise
Σ is incomplete.

Speaking in terms of (labelled) trees: if each direct answer to Q is (a label of)
a certain leaf, the e-scenario is complete; if the leaves are (labelled by) only
some, but not all direct answers to Q, the e-scenario is incomplete.

The e-scenarios depicted in Figures 9.10, 9.8, 9.7, 9.6, 9.2 are incomplete,
whereas the remaining e-scenarios presented above are complete.

Since e-scenarios are finite sets of e-derivations/finite labelled trees, we have:

Corollary 10.2. The principal question of a complete e-scenario has a finite
number of direct answers.

Note that even a complete e-scenario can have different paths which lead
to the same direct answer to the principal question. The e-scenarios presented
in Figures 9.12, 9.11, 9.5, 9.4 are cases in point here.

10.2 Pure e-scenarios and standard e-scenarios

Definition 9.4 of e-scenarios (as well as Definition 9.10) allows both the back-
ground X and sets of initial premises to be empty. In order to distinguish
e-scenarios which do not rely upon any initial premise(s) we introduce:
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Definition 10.3 (Pure e-scenario). A pure e-scenario is an e-scenario which
does not involve any initial premise.

Figure 10.1 presents an example of a pure e-scenario.

?(p ∧ q)
?± |p, q|

?p

p
?q

q
p ∧ q

¬q
¬(p ∧ q)

¬p
¬(p ∧ q)

Fig. 10.1. An example of a pure e-scenario.

10.2.1 Standard e-scenarios for logical constants. The case of
Classical Logic

Let us now be more specific. Assume that questions and d-wffs involved belong,
syntactically and semantically, either to the language L?

cpl or to the language

L?
fom .

A simple yes-no question has the form:

?{A,¬A}

and is abbreviated as:
?A

We say that question of the form ?{A,¬A} is based on the d-wff A.

Recall the following facts about erotetic implication (in L?
cpl as well as in

L?
fom):

Im(?¬A, ?A)

Im(?(A⊗B), ?± |A,B|)

where ⊗ is any of the connectives: ∧,∨,→,↔.

Im(?± |A,B|, ?A)

Im(?± |A,B|, ?B)

Figures 10.2, 10.3, 10.4, 10.5, 10.6 present schemas of standard e-scenarios for
simple yes-no questions whose affirmative answers are compound d-wffs. They
are pure e-scenarios. Note that the queries involved are also simple yes-no ques-
tions and that their affirmative answers are proper subformulas of affirmative
answers to principal questions. In other words, the queries are based on proper
subformulas of the d-wff on which the principal question is based.
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?¬A
?A

¬A A
¬¬A

Fig. 10.2. A schema of the standard e-scenario for negation.

?(A ∧B)
?± |A,B|

?A

A
?B

B
A ∧B

¬B
¬(A ∧B)

¬A
¬(A ∧B)

Fig. 10.3. A schema of the standard e-scenario for conjunction.

?(A→ B)
?± |A,B|

?A

A
?B

B
A→ B

¬B
¬(A→ B)

¬A
A→ B

Fig. 10.4. A schema of the standard e-scenario for implication.

?(A ∨B)
?± |A,B|

?A

A
A ∨B

¬A
?B

B
A ∨B

¬B
¬(A ∨B)

Fig. 10.5. A schema of the standard e-scenario for disjunction.
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?(A↔ B)
?± |A,B|

?A

A
?B

B
A↔ B

¬B
¬(A↔ B)

¬A
?B

B
¬(A↔ B)

¬B
A↔ B

Fig. 10.6. A schema of the standard e-scenario for equivalence.

What about quantified d-wffs? Figures 10.7 and 10.8 depict schemas of the
appropriate standard e-scenarios which, again, are pure e-scenarios.

?∃xAx
?{∀x¬Ax,¬∀x¬Ax,∀xAx}

?∀xAx

∀xAx
∃xAx

¬∀xAx
?∀x¬Ax

∀x¬Ax
¬∃xAx

¬∀x¬Ax
∃xAx

Fig. 10.7. A schema of the standard e-scenario for an existential quantifier.

?∀xAx
?{∃x¬Ax,¬∃x¬Ax,¬∃xAx}

?∃xAx

∃xAx
?∃x¬Ax

∃x¬Ax
¬∀xAx

¬∃x¬Ax
∀xAx

¬∃xAx
¬∀xAx

Fig. 10.8. A schema of the standard e-scenario for a universal quantifier.
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Note that e-scenarios falling under the schemas presented by Figures 10.2 –
10.8 are complete.In constructing the e-scenarios (10.7) and (10.8) we made
use of the following facts about erotetic implication in L?

fom :

Im(?∃xAx, ?{∀x¬Ax,¬∀x¬Ax, ∀xAx})

Im(?{∀x¬Ax,¬∀x¬Ax, ∀xAx}, ?∀xAx)

Im(?∀xAx, ?{∃x¬Ax,¬∃x¬Ax,¬∃xAx})

Im(?{∃x¬Ax,¬∃x¬Ax,¬∃xAx}, ?∃xAx)

10.2.2 Standard decomposition e-scenarios

Let us now consider a question (of L?
cpl or of L?

fom) having the form:

?{A1, . . . , An} (10.1)

Assume that (10.1) is a safe question.1 Thus we have:

∅ ||= {A1, . . . , An} (10.2)

{¬A1, . . . ,¬An−1} |= An (10.3)

¬Ai ||= {A1, . . . , An} \ {Ai} (10.4)

Im(?{A1, . . . , An}, ?Ai) (10.5)

for i = 1, . . . , n. Now assume that (10.1) is not a simple yes-no question. Figure
10.9 presents a schema of a pure e-scenario which is applicable to the case.
Note that the queries are simple yes-no questions based on direct answers to
the principal question.2

The situation gets slightly more complicated when (10.1) is not a safe ques-
tion. In such a case one cannot rely on (10.2) – (10.5). However, the following
hold:

{A1 ∨ . . . ∨An,¬A1, . . . ,¬An−1} |= An (10.6)

Im(?{A1, . . . , An}, A1 ∨ . . . ∨An, ?Ai) (10.7)

for i = 1, . . . , n.

Figure 10.10 presents a schema of a standard decomposition e-scenario for a
risky question of the form (10.1) based on (the set made of) A1 ∨ . . .∨An. The
e-scenario is not pure. However, the queries are still yes-no questions based on
direct answers to the principal question.

The disjunction of all the direct answers to (10.1), A1∨. . .∨An, is a prospec-
tive presupposition of (10.1). As a matter of fact, the disjunction occurring in
Figure 10.10 can be replaced by any prospective presupposition of the question,
in particular by a disjunction of all the direct answers in which the disjuncts
are ordered differently.

1 See Definition 4.2 in Chapter 4.
2 But not on all of them; An is not questioned. By the way, this warrants that when

(10.1) is of the form ?{¬A,A}, Figure 10.9 still depicts an e-scenario; otherwise
clause (1a) of Definition 9.1 would be violated.
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?{A1, . . . , An}
?A1

A1 ¬A1

?A2

A2 ¬A2

. . .

?An−1

An−1 ¬An−1

An

Fig. 10.9. A schema of the standard decomposition e-scenario for a safe whether-
question that is not a simple yes-no question.

?{A1, . . . , An}
A1 ∨ . . . ∨An

?A1

A1 ¬A1

?A2

A2 ¬A2

. . .

?An−1

An−1 ¬An−1

An

Fig. 10.10. A schema of the standard decomposition e-scenario for a risky whether-
question.

What about questions which have an infinite number of direct answers? Ac-
cording to Corollary 10.2, there are no complete e-scenarios for them. But still,
incomplete e-scenarios for such questions are possible. As for decomposition,
we need as an initial premise a d-wff which warrants that a true direct answer
to the principal question belongs to a given finite subset of the set of direct
answers. To be more precise, let Q be a question with an infinite number of
direct answers, and BA1,...,Ak

Q be a d-wff such that:

BA1,...,Ak

Q ||= {A1, . . . , Ak} (10.8)
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where {A1, . . . , Ak} ⊂ dQ, k > 1 and BA1,...,Ak

Q /∈ dQ. Thus the following hold:

{BA1,...,Ak

Q ,¬A1, . . . ,¬Ak−1} |= Ak (10.9)

{BA1,...,Ak

Q ,¬Ai} ||= dQ \ {Ai} (10.10)

for i = 1, . . . , k, and therefore:

Im(Q,BA1,...,Ak

Q , ?Ai) (10.11)

where 1 ≤ i ≤ k. Given the above assumptions, Figure 10.11 presents a schema
of a decomposition e-scenario for Q with the d-wff BA1,...,Ak

Q as the only initial
premise.

Q

B
A1,...,Ak
Q

?A1

A1 ¬A1

?A2

A2 ¬A2

. . .

?Ak−1

An−1 ¬Ak−1

Ak

Fig. 10.11. A schema of a decomposition e-scenario for a question with an infinite
number of direct answers.

Remarks. What is crucial for the results sketched above is not the form of
questions, but the fact that logical constants are understood as in Classical
Logic. We use the languages L?

cpl and L?
fom for illustrative purposes only. The

picture can change when connectives and/or quantifiers are construed non-
classically.

We are not claiming that the decomposition e-scenarios described in this
section are always best from a pragmatic point of view.

10.3 Information-picking e-scenarios

The next category to be distinguished are information-picking e-scenarios.
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We need some auxiliary notions.

We say that a question Q is informative relative to a set of d-wffs Z iff no
direct answer to Q is entailed by Z.

Let s = s1, . . . , sn be a path of an e-scenario Σ. We define:

dec<s (sk) = {sj : j < k and sj is a d-wff }

Thus dec<s (sk) is the set of d-wffs made up of terms of s that occur in s before
sk. Note that dec<s (sk) can be empty.

Definition 10.4 (Information-picking e-scenario). An e-scenario Σ for Q
relative to X is information-picking iff:

1. Q is informative relative to the set of initial premises of Σ, and
2. for each path s = s1, . . . , sn of Σ:

a. if sk is a query of s, then sk is informative relative to dec<s (sk), and
sk+1 /∈ dQ,

b. dec<s (sn) entails sn.

The underlying intuitions are the following. First, due to the clause (1), the
principal question cannot be resolved by means of the initial premises only and
thus new information is needed. Second, new information is collected gradually:
by (2a), no query can be resolved by means of information received so far
together with the initial premises used and hence a direct answer to a query
brings in new information. Moreover, no direct answer to a query is itself a
direct answer to the principal question. Third, clause (2b) amounts to the
following: the last term of a path – a direct answer to the principal question – is
to be entailed by the initial premises of Σ that occur on the path supplemented
with the answers to queries that occur on the path.

All the exemplary e-scenarios presented in Chapter 9 are information-
picking.

Let us stress that clause (1) of Definition 10.4 pertains to the set of initial
premises of an e-scenario and thus not necessarily to the background of the
scenario. When we have an e-scenario for Q relative to X, there is nothing in
Definition 9.4 (and similarly in Definition 9.10) that forces all the elements of X
to function as initial premises (i.e. to occur at a path) of the e-scenario. In other
words, the background and the set of initial premises of an e-scenario need not
be equal: the former can be a superset of the latter.3 So if Σ is an e-scenario for
Q relative to X and Σ is information-picking, question Q is informative relative
to the set of initial premises of Σ, but not necessarily relative to the whole X
or a superset of X. Hence the following cognitive situation can be modelled
in terms of information-picking e-scenarios. Let Σ be an information-picking
e-scenario for Q relative to X such that the set of initial premises of Σ, say,
X∗, is a proper subset of X. Suppose that Q is not informative relative to X,

3 Looking from the purely formal point of view, an e-scenario for Q relative to X is
an e-scenario for Q relative to any superset of X that is disjoint with dQ. On the
other hand, an e-scenario Σ for Q relative to X is also an e-scenario for Q relative
to the set of initial premises of Σ.
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that is, to speak generally, Q can be resolved by means of X. What Σ does,
pragmatically, is to show what information one should attempt to retrieve from
X in order to solve the problem expressed by Q.

Information-picking e-scenarios seem to constitute an interesting class from
the point of view of possible applications. This is not to say, however, that only
such e-scenarios are relevant in this respect. For instance, let us consider the
e-scenario presented by Figure 10.12:

?p→ (q → p)
?± |p, q → p|

?p

p
q → p

p→ (q → p)

¬p
p→ (q → p)

Fig. 10.12. A pure e-scenario from which a synthetic tableau can be extracted.

Figure 10.12 depicts a pure e-scenario. It fulfils the clauses (2a) and (2b)
of Definition 10.4, but is not information-picking since the affirmative answer
to the principal question is a CPL-valid formula and thus clause (1) of the
definition does not hold. However, the e-scenario seems to show the following:
whatever the logical values of p and q are, the affirmative answer to the principal
question is the case. Figure 10.13 presents a more sophisticated e-scenario with
analogous properties.

?(¬(p ∧ q)→ ¬p ∨ ¬q)
?± |¬(p ∧ q),¬p ∨ ¬q|

?¬(p ∧ q)
?(p ∧ q)
?± |p, q|

?p

p
?q

q
p ∧ q

¬¬(p ∧ q)
¬(p ∧ q)→ ¬p ∨ ¬q

¬q
¬p ∨ ¬q

¬(p ∧ q)→ ¬p ∨ ¬q

¬p
¬p ∨ ¬q

¬(p ∧ q)→ ¬p ∨ ¬q

Fig. 10.13. A pure e-scenario from which a synthetic tableau can be extracted.

When we delete questions from paths of the e-scenario displayed in Figure
10.13, we will get the sequences (10.12), (10.13), (10.14) of CPL-formulas:
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p, q, p ∧ q,¬¬(p ∧ q),¬(p ∧ q)→ ¬p ∨ ¬q (10.12)

p,¬q,¬p ∨ ¬q,¬(p ∧ q)→ ¬p ∨ ¬q (10.13)

¬p,¬p ∨ ¬q,¬(p ∧ q)→ ¬p ∨ ¬q (10.14)

Each of the sequences (10.12), (10.13), (10.14) “synthesizes” the affirmative
answer to the principal question from its subformulas and/or negations of its
subformulas. The sequences are interconnected, generally speaking, in the way
characterized by Figure 10.13. They, jointly, constitute a synthetic tableau for
the affirmative answer, which, let us recall, is a CPL-valid formula. The concept
of a synthetic tableau, as well as methods and rules of building such tableaux,
can be made precise. As an outcome we get a proof method, the Synthetic
Tableaux Method, proposed and developed by Mariusz Urbański.4

4 Cf. Urbański (2001a), Urbański (2001b), Urbański (2002a), Urbański (2002b).
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Operations on E-scenarios

Where do e-scenarios come from? The simplest answer is: they simply exist,
just as other logical objects do. If one is not pleased with this Platonic answer,
the next plausible answer is: they are constructed, and in order to construct
them one needs a logic of questions which determines erotetic implication, and
a logic of declaratives that determines entailment.

An interesting feature of e-scenarios is that some of them can be ob-
tained from already existing/constructed e-scenarios. In this chapter we will
describe two operations which lead, under some conditions, from e-scenarios to
e-scenarios.

11.1 Embedding

The first operation can be called embedding. Let us start with examples.

Example 11.1. Consider the e-scenarios displayed in Figures 11.1 and 11.2.

Question ?(Ra∧Ta) is a query of the e-scenario depicted in Figure 11.1 and
is the principal question of the (complete!) e-scenario displayed in Figure 11.2.
We embed the latter e-scenario into the former. The result is the e-scenario
displayed in Figure 11.3 (already presented in section 9.5.1 of Chapter 9).

?Pa

∀x(Px↔ Rx ∧ Tx)

?(Ra ∧ Ta)

Ra ∧ Ta

Pa

¬(Ra ∧ Ta)
¬Pa

Fig. 11.1. The e-scenario into which an e-scenario will be embedded.

Some comments are in order. Question ?(Ra ∧ Ta) is a query of the e-scenario
displayed in Figure 11.1. The e-scenario “shows” that once Ra∧ Ta is the case,
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?(Ra ∧ Ta)
?± |Ra, Ta|

?Ra

Ra

?Ta

Ta

Ra ∧ Ta

¬Ta
¬(Ra ∧ Ta)

¬Ra
¬(Ra ∧ Ta)

Fig. 11.2. The e-scenario which is embedded into the previous one.

?Pa

∀x(Px↔ Rx ∧ Tx)

?(Ra ∧ Ta)
?± |Ra, Ta|

?Ra

Ra

?Ta

Ta

Ra ∧ Ta

Pa

¬Ta
¬(Ra ∧ Ta)
¬Pa

¬Ra
¬(Ra ∧ Ta)
¬Pa

Fig. 11.3. The result of embedding.

the solution (given the initial premise) is Pa, and once ¬(Ra ∧ Ta) holds, the
solution is ¬Pa (again, given the premise). But question ?(Ra∧Ta) is the princi-
pal question of the e-scenario depicted in Figure 11.2. This e-scenario, in turn,
shows how the query can be resolved step by step by asking and answering
further queries, and that one gets the answer Ra∧Ta if one has got Ra and then
Ta, and gets the answer ¬(Ra∧Ta) if one has got either only ¬Ra or first Ra and
then ¬Ta. The e-scenario depicted by Figure 11.3 carries the above pragmatic
information in addition to that already provided by the e-scenario displayed in
Figure 11.1. On the other hand, the e-scenario can be constructed out of the
e-scenarios displayed in Figures 11.1 and 11.2 purely syntactically.

How? Consider the paths of the e-scenario displayed in Figure 11.1:

?Pa,∀x(Px↔ Rx ∧ Tx), ?(Ra ∧ Ta), Ra ∧ Ta, Pa (11.1)

?Pa, ∀x(Px↔ Rx ∧ Tx), ?(Ra ∧ Ta),¬(Ra ∧ Ta),¬Pa (11.2)

Take the query-answer segment of (11.1):

?(Ra ∧ Ta), Ra ∧ Ta (11.3)
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There is only one path of the e-scenario depicted in Figure 11.2 that leads to
Ra ∧ Ta, namely:

?(Ra ∧ Ta), ?± |Ra, Ta|, ?Ra, Ra, ?Ta, Ta, Ra ∧ Ta (11.4)

Let us replace the query-answer segment (11.3) of (11.1) with the sequence
(11.4). The result is (to improve readability, the segment (11.4) of (11.5) is
underlined):

?Pa,∀x(Px↔ Rx ∧ Tx), ?(Ra ∧ Ta), ?± |Ra, Ta|, ?Ra, Ra, ?Ta, Ta, Ra ∧ Ta, Pa (11.5)

Now take the query-answer segment of (11.2):

?(Ra ∧ Ta),¬(Ra ∧ Ta) (11.6)

There are two paths of the e-scenario displayed in Figure 11.2 which lead to
¬(Ra ∧ Ta):

?(Ra ∧ Ta), ?± |Ra, Ta|, ?Ra,¬Ra,¬(Ra ∧ Ta) (11.7)

?(Ra ∧ Ta), ?± |Ra, Ta|, ?Ra, Ra, ?Ta,¬Ta,¬(Ra ∧ Ta) (11.8)

First, we replace the query-answer segment (11.6) of (11.2) with the path (11.7)
of the e-scenario for the query. We get:

?Pa, ∀x(Px↔ Rx ∧ Tx), ?(Ra ∧ Ta), ?± |Ra, Ta|, ?Ra,¬Ra,¬(Ra ∧ Ta),¬Pa (11.9)

Second, we replace the segment (11.6) of (11.2) with the path (11.8). The result
is:

?Pa, ∀x(Px↔ Rx ∧ Tx), ?(Ra ∧ Ta), ?± |Ra, Ta|, ?Ra, Ra, ?Ta,¬Ta,

¬(Ra ∧ Ta),¬Pa (11.10)

Each of (11.5), (11.9), (11.10) is an e-derivation of a direct answer to ques-
tion ?Pa on the basis of (the set whose only element is) ∀x(Px↔ Rx ∧ Tx). They,
jointly, constitute the e-scenario displayed in Figure 11.3.

The embedded scenario was a pure one, that is, the set of its initial premises
was empty. A slight complication arises when an embedded e-scenario does not
have this property. Let us illustrate this with an example.

Example 11.2. Take the e-scenario displayed in Figure 11.4 (already presented
in section 9.5 of Chapter 9). Let us embed the e-scenario depicted in Figure
11.5 into the e-scenario displayed in Figure 11.4; the embedding takes place
with respect to the query ?t. The result of embedding is displayed in Figure
11.6.

Underlining indicates the items of the e-scenario which has been embedded
that occur in the resultant e-scenario; we used underlining in order to improve
readability only.
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?{p, q, r}
p ∨ q ∨ r
s→ p

¬s→ ¬r
q ↔ t ∨ u

?s

s
p

¬s
¬r
p ∨ q

?q
?{t, u,¬(t ∨ u)}

?t

t
q

¬t
?u

u
q

¬u
p

Fig. 11.4. An e-scenario subjected to em-
bedding.

?t

t↔ w

¬t↔ z
?{w, z}

w
t

z
¬t

Fig. 11.5. An e-scenario to be embedded.

?{p, q, r}
p ∨ q ∨ r
s→ p

¬s→ ¬r
q ↔ t ∨ u

?s

s
p

¬s
¬r
p ∨ q
t↔ w

¬t↔ z

?q
?{t, u,¬(t ∨ u)}

?t
?{w, z}

w
t
q

z
¬t
?u

u
q

¬u
p

Fig. 11.6. The result of embedding of the
e-scenario depicted in Figure 11.5 into
the e-scenario displayed in Figure 11.4.
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The paths of the e-scenario displayed in Figure 11.5:

?t, t↔ w,¬t↔ z, ?{w, z}, w, t (11.11)

?t, t↔ w,¬t↔ z, ?{w, z}, z,¬t (11.12)

share the segment:
t↔ w,¬t↔ z (11.13)

whose terms are initial premises that occur in the e-scenario before its first
query; let us call it “initial d-segment”. This segment occurs in the resultant
e-scenario (depicted in Figure 11.6) just before the first auxiliary question that
precedes the query ?t for which we embedded. Moreover, the following segments
of the e-scenario subjected to embedding (displayed in Figure 11.4):

?t, t (11.14)

?t,¬t (11.15)

are replaced in the resultant e-scenario by the sequences of wffs:

?t, ?{w, z}, w, t (11.16)

?t, ?{w, z}, z,¬t (11.17)

Both (11.16) and (11.17) begin with the query with respect to which embedding
takes place/the principal question of the embedded e-scenario, and then com-
prise segments of paths (11.11) and (11.12) of the embedded e-scenario which
immediately succeed the initial d-segment and agree with the replaced query-
answer segments (11.14) and (11.15) as to last terms. Such a move warrants
that the resultant sequences of wffs are e-derivations. Recall that, according
to clause (1c) of Definition 9.1 of e-derivation, an auxiliary question must be
immediately followed either by a direct answer to it or by a question. For this
reason we put initial d-segments of embedded e-scenarios just before the first
auxiliary question that precedes the query for which we embed, or, if there are
no such auxiliary questions, just before the query itself.

Observe that the e-scenarios depicted in Figures 11.4 and 11.6 do not
differ which respect to their leftmost paths. These paths, however, do not “go
through” the query for which we embed.

11.1.1 A formal account of embedding

In order to give a formal account of embedding we need some auxiliary notions
as well as notational conventions.

I. Let Σ be an e-scenario for Q relative to X, and s = s1, . . . , sn be a path
of Σ. For each term sm of s we define the set Σ[s,sm] of paths of Σ that “go
through” sm.

Σ[s,sm] = {s∗ ∈ Σ : s∗i = si for i = 1, . . . ,m} (11.18)

Σ[s,sm] is thus the set of paths of Σ which have the wff sm as m-th term and
agree with s as to previous terms.
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We define:

Σ̂[s,sm] = Σ \Σ[s,sm] (11.19)

Σ̂[s,sm] is the set of paths of Σ that do not “go through” sm. Clearly we have:

Σ[s,sm] ∪ Σ̂[s,sm] = Σ (11.20)

II. Let s = s1, . . . , sn be a path of Σ, and sk be a query of s. Path s can be
displayed/analysed as:

γ[s]
′ sj

′ ε[s]
′ sk, sk+1

′ ζ[s] (11.21)

where ′ stands for the concatenation sign and:

1. j is the greatest index lower than k such that sj is not an auxiliary question
and sj+1, . . . , sk is a sequence of questions;

2. sk+1 is the direct answer to sk, that is, the next term of s after sk;
3. γ[s] = s1, . . . , sj−1;
4. ε[s] = sj+1, . . . , sk−1;
5. ζ[s] = sk+2, . . . , sn.

As for the first condition, observe that j always exists, is unique, and can
be calculated as follows. A query of a path is immediately preceded on the
path by: (a) the principal question, or (b) a sequence of auxiliary questions
that are not queries, possibly a one-term sequence, or (c) a sequence of d-wffs,
again possibly a one-term sequence. In the case of (c) we have j = k− 1. If (a)
holds, we get j = 1, hence γ[s] is empty and s1 is the principal question. If (b)
takes place, j = k − (d + 1), where d is the number of terms of the sequence
of auxiliary questions that immediately precedes sk. Of course, ε[s] is empty if
j = k − 1, and ζ[s] is empty if n = k + 1. Note that if γ[s] is non-empty, it may
involve queries; sk is not supposed to be the first query of a path.

Each path s∗ = s∗1, . . . , s
∗
u in Σ[s,sk] (s included!) can be displayed/analysed

in this manner. Moreover, j is fixed in Σ[s,sk], since for any s, s∗ in Σ[s,sk] we
have si = s∗i for i = 1, . . . , k.

III. Let ∆ be a complete e-scenario for question sk relative to a set of d-wffs
Y . Each path g = g1, . . . , gw of ∆ can be displayed/analysed as:

sk
′ ρ[g]

′ gh
′ δ[g]

′ B (11.22)

where ′ is the concatenation sign and:

6. g1 = sk;
7. h is the index of the first auxiliary question of g;
8. ρ[g] = g2, . . . , gh−1;
9. δ[g] = gh+1, . . . , gw−1;

10. gw = B.

Thus B is the direct answer to question sk that is the endpoint of path g.
Again, if h = 2, then ρ[g] is, obviously, empty, and δ[g] is empty if w = h+ 1.

By Corollary 9.8, each path of ∆ involves at least one query, and by Corol-
lary 9.9 there exists the first query of ∆ which is common to all the paths.
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Thus h always exists and is either the index (at g) of the first query of ∆ or
is the least index (again, at g) of an auxiliary question of g that precedes the
first query. But if g and g∗ are any paths of ∆, then, again by Corollary 9.9,
ρ[g] = ρ[g∗] and gh = g∗h. Hence h is fixed for ∆ as well. Moreover, if we define:

ids∆ = ρ[g] (11.23)

faq∆ = gh (11.24)

(“ids” alludes to “initial declarative segment”, and “faq” to “first auxil-
iary question”), any path g∗ = g∗1, . . . , g

∗
z of ∆ (g included!) can be dis-

played/analysed as:

sk
′ ids∆

′ faq∆
′ δ[g∗]

′ C (11.25)

where C is a direct answer to question sk.

Now let us define:

∆B = {g ∈ ∆ : g = sk
′ ids∆

′ faq∆
′ δ[g]

′ B} (11.26)

∆B is thus the set of paths of ∆ that end with the answer B to the principal
question sk of ∆. Note that ∆B need not be a singleton set.

IV. As above, sk is assumed to be a query of a path s of Σ. Consider the
following set:

Σ[s,sk,B] = {s∗ ∈ Σ[s,sk] : s∗k+1 = B} (11.27)

where B ∈ dsk. Thus, Σ[s,sk,B] is the set of paths of Σ that “agree” with s up to
their k-th terms and then have the answer B to query sk as their (k+1)st terms.
(The path s may belong to Σ[s,sk,B] or not, depending on whether sk+1 = B.)

Take an arbitrary but fixed element t = t1, . . . , tu of Σ[s,sk,B]. Since
Σ[s,sk,B] is included in Σ[s,sk], the sequence t can be displayed/analysed as:

γ[t]
′ tj

′ ε[t]
′ tk, B

′ ζ[t] (11.28)

Of course, we have:

γ[t]
′ tj

′ ε[t]
′ tk = γ[s]

′ sj
′ ε[s]

′ sk (11.29)

and thus question sk is also a query of t preceded in t by the same sequence
of wffs which precedes it in s. In other words, the segments of s and t ending
with sk and tk, respectively, are identical.

V. Let us now define a certain operation on Σ[s,sk,B] and ∆B , symbolized by
~:

Definition 11.3. Let t ∈ Σ[s,sk,B] and g ∈ ∆B.

t ~ g = γ[t]
′ tj

′ ids∆
′ ε[t]

′ tk
′ faq∆

′ δ[g]
′ B ′ ζ[t]

Since (11.29) is true, we get:

t ~ g = γ[s]
′ sj

′ ids∆
′ ε[s]

′ sk
′ faq∆

′ δ[g]
′ B ′ ζ[t] (11.30)

for any t ∈ Σ[s,sk,B] and g ∈ ∆B .1 Recall that the following

1 If s ∈ Σ[s,sk,B], then s~ g = γ[s]
′ sj
′ ids∆

′ ε[s]
′ sk

′ faq∆
′ δ[g]

′B ′ ζ[s].
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g = sk
′ ids∆

′ faq∆
′ δ[g]

′ B

Thus ~ puts the initial declarative segment, ids∆, of g immediately before
the first auxiliary question that precedes2 the query sk or, if there is no such
auxiliary question, just before sk itself, and then replaces the query-answer
segment sk, B with the sequence:

sk
′ faq∆

′ δ[g]
′ B

We have already used this kind of transformation in our analysis of Example
11.2. When ids∆ is empty, the segment of t that precedes the query for which
we embed remains unchanged. This special case of ~ had been used in Example
11.1.

One may ask why the segment faq∆ of g is required to be “moved” sep-
arately, that is, to be situated just before the first auxiliary question that
precedes question/query sk or, if there is no such auxiliary question, immedi-
ately before question sk itself. The answer is: this warrants that t ~ g is an
e-derivation. Due to clause (1c) of Definition 9.1 of e-derivation, an auxiliary
question must be followed either by a direct answer or by a question. Question
sk is an auxiliary question of t and placing the segment faq∆ immediately af-
ter sk (as it has occurred in the e-scenario which is embedded) would result in
violating clause (1c) of Definition 9.1.

VI. We also need the following:

Definition 11.4. Let s be a path of an e-scenario for question Q, sk be a query
of s, and ∆ be a complete e-scenario for question sk.

1. Σ∆B ,~
[s,sk]

= {t ~ g : t ∈ Σ[s,sk,B] and g ∈ ∆B}

2. Σ∆,~
[s,sk]

=
⋃

B∈dsk
ΣB,~

[s,sk]

Observe that Σ∆B ,~
[s,sk]

is a singleton set only if both Σ[s,sk,B] and ∆B are

singleton sets3, otherwise Σ∆B ,~
[s,sk]

has more than one element. However, ΣB,~
[s,sk]

is always a finite set, since both Σ and ∆ are, as any e-scenarios, finite sets.
Since ∆ is an e-scenario for a query, and, by Corollary 9.7, each query is a
question with a finite number of direct answers, Σ∆,~

[s,sk]
is always finite. On the

other hand, each question is assumed to have at least two direct answers and
thus Σ∆,~

[s,sk]
is never a singleton set.

VII. By applying the concepts introduced above we define embedding by:

Definition 11.5 (Embedding). Let sk be a query of a path s of an e-scenario
Σ, and ∆ be a complete e-scenario for question sk.

EMB(∆/s, sk, Σ) = Σ̂[s,sk] ∪Σ
∆,~
[s,sk]

2 In t and in s; recall that (11.29) holds and sk = tk is the case.
3 The former happens iff question sk is the “last” query of t, the latter iff there is

only one path of ∆ that leads to B. Neither of those situations is a rule.
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The inscription “EMB(∆/s, sk, Σ)” reads “the result of embedding ∆ into Σ
with respect to query sk of path s of Σ”.

Let us stress that embedding is defined only for the case ∆ is a complete e-
scenario for the query. Note also that embedding is akin to replacement rather
than to substitution: a given question can occur as a query on many different
paths or occur many times at the same path, but embedding always pertains
to a fixed occurrence of the question as a query at a given path, and affects a
cluster of paths. To speak generally, embedding is not “global”, but is always
“local”.

Recall that Σ̂[s,sk] is the set of paths of Σ that do not “go through” the
query sk. These paths, if there are any, remain unaffected by embedding.4

Clearly we have:

Corollary 11.6. EMB(∆/s, sk, Σ) = EMB(∆/t, tk, Σ), for any t ∈ Σ[s,sk].

A thorough examination of the constructions presented above leads us to:

Theorem 11.7 (Embedding Theorem). Let Σ be an e-scenario for a ques-
tion Q relative to a set of d-wffs X, and let sk be a query of a path s of Σ.
Let ∆ be a complete e-scenario for question sk relative to a set of d-wffs Y .
EMB(∆/s, sk, Σ) is an e-scenario for Q relative to X ∪ Y if the following
conditions hold:

1. Y ∩ dQ = ∅, and
2. for each question Q∗ of ∆ : dQ∗ 6= dQ.

Conditions (1) and (2) are indispensable, due to clause (4) of Definition 9.4
of e-scenarios, and clause (1a) of Definition 9.1 of e-derivations. ∆ has to be
complete because otherwise clause (3a) of Definition 9.4 would not hold.

11.1.2 A procedural account of embedding

Embedding has been defined with all the details since this enables us to prove
some feasibility as well as reducibility results (see the next chapter). However,
to embed an e-scenario into an e-scenario is, in practice, an easy enterprise.
Below we sketch a simple procedure which can be turned into an algorithm.

Goal: Σ is an e-scenario for Q relative to X. The task is to perform embedding
in Σ w.r.t. query sk of path s of Σ. What is embedded is a complete e-scenario
∆ for the question/query sk.

Preparatory steps:

1. We identify the initial declarative segment ids∆ of ∆ and the first auxiliary
question faq∆ of ∆.

2. We establish some order, B1, . . . , Bn, of the elements of dsk, i.e. direct
answers to the question sk.

4 Σ̂[s,sk] is empty if sk is the first query of Σ. If we embed with respect to the first
query, all the paths are affected.
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3. For each direct answer Bi to sk we identify ∆Bi
, i.e. the set comprising all

the paths of ∆ that end with Bi. Then, for each ∆Bi
, we build the set ∆?

Bi

of segments of elements of ∆Bi that begin with faq∆ and end with Bi.

4. For each i = 1, . . . , n, we establish some order of elements of ∆?
Bi

.

5. For each set of sequences Σ[s,sk,Bi] we establish some order of the elements
of the set.

First step: We replace each sequence t in Σ[s,sk,Bi] (i.e. each path of Σ “going
through” the query sk and its answer Bi) with the sequence which differs from
t only in having the first (in the order previously established) element of ∆?

Bi

at the place at which the query/answer segment sk, Bi occurs in t.

We proceed analogously with respect to the consecutive elements of ∆?
Bi

(if
there are any). We stop when all the elements have been already used w.r.t. all
the paths in Σ[s,sk,Bi].

Having the procedure completed for paths in Σ[s,sk,Bi], we proceed in an
analogous manner with sequences in Σ[s,sk,Bi+1] w.r.t. ∆?

Bi+1
.

We start with i = 1, for each 1 ≤ i ≤ n proceed according to the order of
sequences in Σ[s,sk,Bi], and stop when all the required operations on sequences
in Σ[s,sk,Bn] have been performed.

Second step: We check if sk is immediately preceded on s by the principal
question Q.

1. If yes, we put ids∆ just after Q.
2. If not, we check if sk is immediately preceded on s by a non-empty sequence

of auxiliary questions.
a. If yes, we put ids∆ just before the first term of the sequence.
b. If not, we put ids∆ just before sk.

The above operation is performed upon each sequence obtained in the first
step.

The outcome is an e-scenario for Q relative to the union of X and the
background of the embedded e-scenario ∆ given that the conditions specified
by Theorem 11.7 are met.

11.2 Contraction

The idea which underlies the concept of contraction is the following. We have an
e-scenario Σ for a question Q relative to a set of d-wffs X, a path s = s1, . . . , sn
of Σ, and a query sk of s. The d-wff sk+1 which is the k+1-st term of s is thus
a direct answer to question/query sk. We assume that sk has been answered
with sk+1. This cancels the query sk and makes the d-wff sk+1 a new initial
premise. Σ contracts with respect to “new” information carried by sk+1: the
paths of Σ which go through the other answers to query sk become irrelevant
and thus are deleted, while the paths which go through sk and sk+1 transform
accordingly.

We first define contraction in general terms and then illustrate the definition
with examples.



11.2 Contraction 147

11.2.1 A formal account of contraction

I. Let s be a path of an e-scenario Σ for Q relative to X, and let sk be a
query of s. Clearly, s belongs to Σ[s,sk+1], but usually Σ[s,sk+1] involves also
some other path(s) of Σ.5

Let t = t1, . . . , tu be an arbitrary but fixed element of Σ[s,sk+1]. According
to what has been said in section 11.1.1, path t can be displayed/analysed as:6

γ[t]
′ tj

′ ε[t]
′ tk, tk+1

′ ζ[t] (11.31)

where j is the greatest index lower than k such that tj is not an auxiliary
question, and ε[t] is a (possibly empty) sequence of auxiliary questions that are
not queries. Of course, we have:

γ[t]
′ tj

′ ε[t]
′ tk, tk+1 = γ[s]

′ sj
′ ε[s]

′ sk, sk+1 (11.32)

As for ζ[t], there are three possibilities:

(a) u = k + 1 and thus ζ[t] is empty;
(b) u > k + 1 and no term of ζ[t] is a question;
(c) u > k + 1 and at least one term of ζ[t] is a question.

If (a) or (b) hold, tk is the last query of t. In the case of (c) the sequence ζ[t]
can be displayed/analysed as:

˘ζ[t]
′ ˆζ[t] (11.33)

where ˘ζ[t] is a (possibly empty) sequence of d-wffs and ˆζ[t] is a sequence of wffs
whose first term is a question.

II. We define a certain operation � on Σ[s,sk+1]:

Definition 11.8. Let t ∈ Σ[s,sk+1].

1. If u = k + 1, then:
�t = γ[t]

′ tj
′ tk+1

2. If u > k + 1 and no term of ζ[t] is a question, then:

�t = γ[t]
′ tj

′ tk+1
′ ζ[t]

3. If u > k + 1 and at least one term of ζ[t] is a question, then:

�t = γ[t]
′ tj

′ tk+1
′ ˘ζ[t]

′ ε[t]
′ ˆζ[t]

Some comments are in order. In each of the above cases the question/query
tk is deleted. When tk is the last query of t, the auxiliary questions that
immediately precede tk in t, if there are any, are deleted as well; more formally,
the segment ε[t] is deleted. Otherwise the segment ˘ζ[t] is placed immediately

after the answer tk+1 and followed by the segments ε[t] and ˆζ[t] (in this order).

5 Σ[s,sk+1] is a singleton set only if sk is the last query of s.
6 Again, because Σ[s,sk+1] is included in Σ[s,sk].
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Such transformation secure �t to be an e-derivation.7 Needless to say, �t
obtained according to (1) or (2) above is an e-derivation as well.

III. Next, we introduce:

Definition 11.9. Let s be a path of an e-scenario Σ, and sk be a query of s.

Σ�
[s,sk+1]

= {�t : t ∈ Σ[s,sk+1]}

Contraction can now be defined by:

Definition 11.10 (Contraction). Let sk be a query of a path s of an e-scenario
Σ, and sk+1 be the direct answer to sk occurring on s.

CTR(sk+1 || s, sk, Σ) = Σ̂[s,sk] ∪Σ
�
[s,sk+1]

The inscription “CTR(sk+1 || s, sk, Σ)” reads “the result of contracting Σ by
the answer sk+1 to query sk of path s of Σ.”

Recall that Σ̂[s,sk] is the set of paths of Σ that do not “go through” the

query sk. Similarly as in the case of embedding, the paths belonging to Σ̂[s,sk],
if there are any, remain unaffected.

Observe that the following holds:

Corollary 11.11. If t∗ ∈ Σ[s,sk] is a path of Σ such that t∗k+1 6= sk+1, then

t∗ /∈ Σ�
[s,sk+1]

.

Thus no path of Σ that goes through a (direct) answer to the query sk other
than sk+1 belongs to CTR(sk+1 || s, sk, Σ): these paths are deleted. This is
how it should be.

We also have:

Corollary 11.12. CTR(sk+1 || s, sk, Σ) = CTR(tk+1 || t, tk, Σ), for any
t ∈ Σ[s,sk+1].

IV. When an e-scenario is contracted, the result need not be an e-scenario.
However, the following holds:

Theorem 11.13 (Contraction Theorem). Let Σ be an e-scenario for a ques-
tion Q relative to a set of d-wffs X, and let sk be a query of a path s of Σ.
CTR(sk+1 || s, sk, Σ) is an e-scenario for Q relative to X ∪ {sk+1} if

1. sk+1 /∈ dQ and

2. Σ̂[s,sk] 6= ∅ or Σ[s,sk,sk+1] involves at least two queries.

When question sk is the only query of Σ, CTR(sk+1 || s, sk, Σ) is a single-
ton set whose only element is an e-derivation of a direct answer to Q on the basis
of the set X ∪ {sk+1}. The clause (2) is equivalent to: “CTR(sk+1 || s, sk, Σ)
has at least two elements”.

7 It is possible that a question of ˆζ[t] occurs in t because it is implied by a question

of ε[t] on the basis of a set of d-wffs which includes element(s) of ˘ζ[t].
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11.2.2 Examples of contraction

Let us now present some examples. We will operate upon the e-scenario depicted
in Figure 11.7.8

?Pa

∀x(Px↔ Rx ∧ Tx)

?(Ra ∧ Ta)
?± |Ra, Ta|

?Ra

Ra

?Ta

Ta

Ra ∧ Ta

Pa

¬Ta
¬(Ra ∧ Ta)
¬Pa

¬Ra
¬(Ra ∧ Ta)
¬Pa

Fig. 11.7. An example of an e-scenario.

Example 11.14. Take the e-scenario displayed in Figure 11.7. We contract by
the answer Ta to the last query, ?Ta, of the leftmost path. The result is depicted
in Figure 11.8. Observe that the path which led through ¬Ta disappears, while
the leftmost path transforms accordingly.

?Pa

∀x(Px↔ Rx ∧ Tx)

?(Ra ∧ Ta)
?± |Ra, Ta|

?Ra

Ra

Ta

Ra ∧ Ta

Pa

¬Ra
¬(Ra ∧ Ta)
¬Pa

Fig. 11.8. An e-scenario resulting from the e-scenario displayed in Figure 11.7 by
contraction; we contract by the answer Ta to the query ?Ta .

Example 11.15. Again, we consider the e-scenario displayed in Figure 11.7 and
its leftmost path, but this time we take the query ?Ra, and we contract by
the answer Ra to it. As a result the rightmost path disappears, question ?Ra
is deleted and auxiliary questions that have preceded it now occur after the
answer Ra. The outcome is presented in Figure 11.9.

8 Already presented at page 138.
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?Pa

∀x(Px↔ Rx ∧ Tx)

Ra

?(Ra ∧ Ta)
?± |Ra, Ta|

?Ta

Ta

Ra ∧ Ta

Pa

¬Ta
¬(Ra ∧ Ta)
¬Pa

Fig. 11.9. An e-scenario resulting from the e-scenario displayed in Figure 11.7 by
contraction; we contract by the answer Ra to the query ?Ra.

Example 11.16. This time we contract the e-scenario displayed in Figure 11.7
with respect to its rightmost path, by the answer ¬Ra to the first query, ?Ra.
The result, presented by Figure 11.10, is not an e-scenario: it is a singleton
set whose only element is an e-derivation of a direct answer to the principal
question.

?Pa

∀x(Px↔ Rx ∧ Tx)

¬Ra
¬(Ra ∧ Ta)
¬Pa

Fig. 11.10. An example of a result of contraction that is not an e-scenario.
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Querying Atomically

Queries of e-scenarios are always questions with finite sets of direct answers.
Besides the finiteness requirement, there is no general restriction on the number
of direct answers to a query. But if the number is large, the number of paths
of an e-scenario is large as well, since, for each direct answer to a query, the e-
scenario contains a path or paths which go through the answer, and paths going
through distinct answers are distinct. So it is a rational strategy to build e-
scenarios whose queries have relatively small sets of direct answers. E-scenarios
with queries being binary questions, that is, questions having only two direct
answers, seem to constitute a privileged class here.

In this chapter we will focus on e-scenarios whose queries are atomic, that
is, are atomic yes-no questions. By an atomic yes-no question we mean a yes-no
question whose set of direct answers comprises an atom and its negation. As
long as natural languages are concerned, atoms are to be identified with (declar-
ative) sentences in which no propositional connective, modal operator, or quan-
tifier occurs. In the case of propositional languages atoms are just propositional
variables. When first-order languages are taken into consideration, atoms are
wffs made up of predicates and closed terms.

We will show that, in some cases, e-scenarios which involve non-atomic
queries can be transformed, in a systematic manner, into e-scenarios whose
queries are atomic. Moreover, relevance, in its broadest sense, is retained: the
queries of the “new” scenario are based on atoms which have occurred in the
queries of the “old” one.

We are going to stay within the limits of Classical Logic: propositional con-
nectives will be understood classically, and modalities will be ignored. More-
over, we will be considering only atomic yes-no questions whose negative an-
swers are classical (sentential) negations of affirmative answers.1 The presented
results pertain both to the propositional level and to the first-order level.

1 As we pointed out in section 1.3 of Chapter 1, many yes-no questions of a natu-
ral language, even based on atoms, permit more sophisticated reading(s). We use
the label “simple” in order to indicate that the negative answer results from the
affirmative one by preceding it with sentential negation.
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As for the propositional level, we use the language L?
cpl. The language L?

fom

is used as exemplary for the first-order case.

Terminology. For convenience, let us introduce/recall some terminological
conventions.

The declarative part of L?
fom is the language of Monadic First-order Logic

with Identity (but without function symbols). By atoms of L?
fom we mean d-wffs

of the form:
Pc

where P is a one-place predicate and c is an individual constant, or of the form:

c = c∗

where c, c∗ are individual constants.

L?
cpl is the language of CPL enriched with questions. An atom of L?

cpl is a
propositional variable.

D-wffs (of L?
cpl or of L?

fom) in which propositional connectives and/or quan-
tifiers occur are said to be compound. A d-wff is called quantifier-free if no
quantifier occurs in it. The degree of a d-wff A (in symbols: deg(A)) is the
number of occurrences of propositional connectives in A. Note that degrees are
independent from the numbers of occurrences of quantifiers.

A sentence of L?
fom is a closed d-wff of the language, i.e. a d-wff with no

free variable(s).

It is convenient to introduce a general category of whether-questions.2 By
a whether-question we will mean an expression of the form:

?{A1, . . . , An} (12.1)

where n > 1 and A1, . . . , An are nonequiform (i.e. pairwise syntactically dis-
tinct) d-wffs of L?

cpl when L?
cpl is considered, and sentences of L?

fom when L?
fom

is taken into account. All questions of L?
cpl are whether-questions, whereas L?

fom

includes also which-questions, both existential and general. As in the previous
chapters, A1, . . . , An are the only direct answers to a question of the form
(12.1).

Due to Corollary 9.7, each query of an e-scenario worded in L?
cpl or in L?

fom

is a whether-question.

A simple yes-no question is a whether-question of the form:

?{A,¬A} (12.2)

A question of the form (12.2) is abbreviated as:

?A (12.3)

and is said to be based on the d-wff A.

2 In Chapter 2 this label was used only in the context of questions of L?
fom .
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An atomic yes-no question is a simple yes-no question based on an atom.
A query of an e-scenario is called atomic if it is an atomic yes-no question. An
e-scenario is atomic if each query of the scenario is atomic, and non-atomic
otherwise.

In what follows we will be always assuming that e-scenarios are language-
homogeneous: when an e-scenario for a question of a language is considered, all
the wffs of the e-scenario belong to the language.

12.1 Atomic e-scenarios for quantifier-free
whether-questions

A question is called quantifier-free if each direct answer to the question is a
quantifier-free d-wff. Clearly, each question of L?

cpl is quantifier-free for trivial

reasons. Some questions of L?
fom are quantifier-free, but some other are not.

We start with a series of lemmas pertaining to quantifier-free whether-
questions.

Lemma 12.1. Let Q be a quantifier-free simple yes-no question based on a
compound d-wff. There exists a pure and complete e-scenario for Q such that
each query of the e-scenario is an atomic yes-no question based on an atom
that occurs in Q.

Proof. Let C be a quantifier-free d-wff such that deg(C) ≥ 1, and let Q = ?C.

Assume that deg(C) = 1. Now take a look at the schemas of standard
e-scenarios for classical connectives depicted in section 10.2.1 of Chapter 10. It
is easily visible that when C involves only one occurrence of a connective, the
corresponding standard e-scenario for question ?C is both pure and complete,
and that each query of the e-scenario is an atomic yes-no question based on an
atom that occurs in the principal question.

Let C be a d-wff of degree n, where n > 1.

Induction hypothesis. If A is a quantifier-free d-wff of degree k, where 1 ≤ k < n,
then there exists a pure and complete e-scenario for question ?A such that each
query of the e-scenario is an atomic yes-no question based on an atom that
occurs in ?A.

Suppose that C is of the form ¬A. Clearly deg(A) < n and A is quantifier-
free. The standard e-scenario for ?¬A, let us designate it by Σ∗, falls under the
schema displayed in Figure 12.1.

?¬A
?A

¬A A
¬¬A

Fig. 12.1. The case of negation.
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Σ∗ is pure and complete. Take the leftmost path, s, of Σ∗. Thus s2 = ?A.
By the induction hypothesis there exists a pure and complete e-scenario ∆ for
question/query ?A whose queries are atomic yes-no questions based on atoms
occurring in A. Now let us embed ∆ for s2. To be more precise, consider the
following set of sequences of wffs:

EMB(∆/s, s2, Σ
∗) (12.4)

Queries of ∆ are atomic yes-no questions, whereas question ?¬A is not atomic.
∆ is a pure e-scenario. Therefore, by the Embedding Theorem3, the set (12.4)
constitutes an e-scenario for question ?C. The e-scenario is, obviously, pure and
complete. Moreover, each query of (12.4) is an atomic yes-no question based
on an atom that occurs in the principal question.

Now suppose that C is of the form A ∧ B. The standard e-scenario for
?(A ∧B), let us designate it by Σ◦, falls under the schema depicted in Figure
12.2:

?(A ∧B)
?± |A,B|

?A

A
?B

B
A ∧B

¬B
¬(A ∧B)

¬A
¬(A ∧B)

Fig. 12.2. The case of conjunction.

Observe that deg(A) < n and deg(B) < n. Of course, A and B are
quantifier-free.

Assume that neither A nor B is an atom. Thus 0 < deg(A) < n and
0 < deg(B) < n. Hence the induction hypothesis applies to queries of Σ◦.
Let ∆′ and ∆′′ be pure and complete e-scenarios for ?A and ?B, respectively;
moreover, each query of ∆′ is an atomic yes-no question based on an atom that
occurs in ?A, and similarly for ∆′′ and ?B.

Take the leftmost path, s, of Σ◦. We have s5 = ?B. Now let us embed ∆′′

for s5. More precisely, we consider the following set of sequences of wffs:

EMB(∆′′/s, s5, Σ
◦) (12.5)

Both Σ◦ and ∆′′ are pure and complete e-scenarios. Each query of ∆′′ is atomic,
while Q is not an atomic yes-no question. Thus, by the Embedding Theorem,
(12.5) is a pure and complete e-scenario for ?C. However, ?A is (still) not an
atomic yes-no question.

3 That is, Theorem 11.7.
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In the next step we take the rightmost path, t, of the e-scenario (12.5). We
have t3 = ?A. We embed ∆′ for t3, that is, we move to:

EMB(∆′/t, t3,EMB(∆′′/s, s5, Σ
◦)) (12.6)

Since ∆′ is pure and complete, all its queries are atomic and ?C is not an atomic
yes-no question, (12.6) is, by the Embedding Theorem, an e-scenario for ?C.
The construction shows that (12.6) is both pure and complete. Moreover, it
shows that each query of (12.6) is an atomic yes-no question based on an atom
that occurs in ?C.

When A is an atom, but B is not, (12.5) constitutes the required e-scenario.
When A is a compound d-wff, but B is an atom, the e-scenario sought for is
characterized by:

EMB(∆′/s, s3, Σ
◦) (12.7)

The remaining cases are dealt with as follows.

Again, suppose that A and B are compound quantifier-free d-wffs.

If C is of the form A → B, we reason in an analogous manner. The only
difference is that we rely upon the schema of the standard e-scenario for impli-
cation (cf. Figure 10.4 in Chapter 10).

When C is of the form A∨B, we first take the rightmost path of the standard
e-scenario (cf. Figure 10.5) and then the leftmost path of the e-scenario obtained
that way.

Finally, if C is of the form A↔ B, we take the leftmost path of the standard
e-scenario (cf. Figure 10.6) and we embed for the second query (i.e. ?B). Then
we take the rightmost path of the e-scenario obtained and we embed for its
second query (which is, again, ?B). Finally, we take the leftmost path of the
e-scenario just obtained and we embed for the first query, that is, for ?A.

When either A or B is an atom, we embed only once. ut

Our next lemma is more general than the previous one.

Lemma 12.2. Let Q be a quantifier-free safe whether-question, but not an
atomic yes-no question. There exists a pure and complete e-scenario for Q
such that each query of the e-scenario is an atomic yes-no question based on
an atom that occurs in Q.

Proof. Since we have already proved Lemma 12.1, it suffices to consider the
case in which Q is a quantifier-free whether-question that is not a simple yes-
no question based on a compound d-wff.

By assumption, Q is not an atomic yes-no question. So, in the analysed
case, Q is a quantifier-free safe question which is not a simple yes-no question.
Let dQ = {A1, . . . , An}.

According to what had been said in section 10.2.2 of Chapter 10, there
exists a decomposition e-scenario for Q which falls under the schema displayed
in Figure 12.3.
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Q
?A1

A1 ¬A1

?A2

A2 ¬A2

. . .

?An−1

An−1 ¬An−1

An

Fig. 12.3. A schema of the standard decomposition e-scenario for a safe whether-
question that is not a simple yes-no question.

Let us designate the relevant decomposition e-scenario by Σ0. Observe that
Σ0 is pure and complete, and that all the queries of Σ0 are simple yes-no
questions based on direct answers to Q. Note that the index of i-th query, ?Ai,
of the rightmost path of Σ0 equals 2i.

When A1, . . . , An−1 are atoms, Σ0 itself constitutes the atomic e-scenario
we are looking for.

Assume that at least one of A1, . . . , An−1 is a compound quantifier-free
d-wff. The reasoning goes as follows.

We identify all the queries of the rightmost path, s, of Σ0 which are not
atomic yes-no questions. Let they be ?Ai1 , . . . , ?Aim , where i1 < . . . < im.
Lemma 12.1 warrants that for each question ?Aik (i1 ≤ ik ≤ im) there exists a
corresponding pure and complete e-scenario, say, ∆ik , whose queries are atomic
yes-no questions based on atoms that occur in ?Aik . We take the last non-atomic
query, ?Aim , of the rightmost path of Σ0, that is, of s. Observe that question
?Aim is the 2im-th term of s. We go to:

EMB(∆im/s, s2im , Σ0) (12.8)

By the Embedding Theorem, (12.8) constitutes an e-scenario for Q: the con-
ditions (1) and (2) of the theorem are fulfilled, since Q is not a simple yes-no
question, while the queries are such questions, and ∆im is a pure e-scenario.

If ?Aim is the only non-atomic query of Σ0, we do nothing, since we have
already found an atomic e-scenario with the required properties. Otherwise we
repeat the procedure with respect to the e-scenario (12.8). To be more precise,
we take the rightmost path, t, of (12.8). Since we have embedded “from the
bottom”, question ?Aim−1

is a non-atomic query of t and, moreover, is 2im−1th
term of t. We repeat the procedure described above, but this time with respect
to ∆im−1

, t, t2im−1
, and (12.8). To be more precise, we go to:
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EMB(∆im−1
/t, t2im−1

,EMB(∆im/s, s2im , Σ0)) (12.9)

It is clear that, after a finite number of steps of the above kind, we will
arrive at a pure and complete e-scenario for Q. Moreover, the construction
shows that all the queries of the e-scenarios are atomic yes-no questions based
on atoms that occur in Q. ut

Let us now consider the case of quantifier-free risky whether-questions.

Lemma 12.3. Let Q be a quantifier-free risky whether-question. There exists
a complete e-scenario for Q relative to a disjunction of all the direct answers
to Q such that each query of the e-scenario is an atomic yes-no question based
on an atom that occurs in Q.

Proof. Since Q is risky, Q is not a simple yes-no question.

Let dQ = {A1, . . . , An}. Let D be a disjunction of all the elements of dQ.
Clearly we have:

{D,¬Ai} ||= dQ \ {Ai}

and therefore:
Im(Q,D, ?Ai)

for 1 ≤ i ≤ n− 1. The following holds as well:

{D,¬A1, . . . ,¬An−1} |= An

We construct an e-scenario, Σ•, for Q relative to D. The scenario falls under
the schema depicted in Figure 12.4.4 Then we reason similarly as in the proof
of Lemma 12.2, but starting with Σ•. The second difference stems from the
fact that the index of i-th query, ?Ai, of the rightmost path of Σ• now equals
2i+ 1. ut

Since each question of L?
cpl is a quantifier-free whether-question, the results

presented by Lemma 12.2 and Lemma 12.3 are pretty general as long as L?
cpl is

concerned. The case of L?
fom is more complicated. L?

fom includes also whether-
questions which are not quantifier-free as well as which-questions. One cannot
generalize the claims of Lemma 12.2 and Lemma 12.3 so that they would pertain
to these questions.

12.2 Transforming an e-scenario into an atomic one

Each query of an e-scenario formulated n L?
cpl or in L?

fom is a whether-question,
but not necessarily a quantifier-free whether-question. In this section we will
show that once we have an e-scenario whose queries are quantifier-free ques-
tions, but the e-scenario is not already atomic, it can be transformed into an

4 The schema presented by Figure 10.10 (see section 10.2.2 of Chapter 10) is an
instance of that depicted in Figure 12.4.
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Q

D
?A1

A1 ¬A1

?A2

A2 ¬A2

. . .

?An−1

An−1 ¬An−1

An

Fig. 12.4. A schema of a decomposition e-scenario for a risky question.

atomic one; moreover, the queries of the “new” scenario are atomic yes-no ques-
tions based on atoms that occur in the queries of the “old” one. To be more
precise, we will prove that, given some conditions are met, such e-scenario ex-
ists, and the proof will show how to construct it out of the initial e-scenario.

By a risky query we mean a query which is, semantically, a risky question.

Theorem 12.4. Let Σ be a non-atomic e-scenario for a question Q relative to
a set of d-wffs X such that each query of Σ is a quantifier-free question. Let
Y be a set whose elements are disjunctions of all the direct answers to risky
queries of Σ such that for each risky query of Σ, exactly one disjunction of
all the direct answers to the query belongs to Y . If Q is not an atomic yes-no
question and dQ ∩ Y = ∅, then there exists an e-scenario Σ/ for Q relative to
X ∪ Y such that all the queries of Σ/ are atomic yes-no questions based on
atoms that occur in the queries of Σ.

Proof. By assumption, at least one query of Σ is not atomic. Since we con-
sider either language L?

cpl or language L?
fom , all the queries of Σ are whether-

questions which are, by assumption, quantifier-free. So Lemma 12.2 and Lemma
12.3 apply to the case.

Take the rightmost path, s, of Σ, on which a non-atomic query occurs.
Consider the last non-atomic query of s, i.e. the non-atomic query of s whose
index in s is the greatest one. Let k be the index; so the query is sk. The
question sk is either safe or risky.

Suppose that sk is safe. By Lemma 12.2 there exists a pure and complete
e-scenario, ∆k, for question sk whose queries are atomic yes-no questions based
on atoms occurring in sk.

Now suppose that sk is risky. Take the disjunction of all the direct answers
to sk that belongs to Y . Lemma 12.3 warrants that there exists a complete
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e-scenario, ∆k, for question sk relative to the disjunction just taken such that
the queries of ∆k are atomic yes-no questions based on atoms that occur in sk.

Now we go to:
EMB(∆k/s, sk, Σ) (12.10)

By assumption, Q is not an atomic yes-no question, and dQ ∩ Y = ∅. Thus,
by the Embedding Theorem, (12.10) constitutes an e-scenario for Q relative to
X ∪ Y . Observe that each query of a path of (12.10) that goes through sk and
has an index greater than k (on the path) is an atomic yes-no question based
on an atom that occurs in sk.

If (12.10) already has the required properties, we do nothing. Otherwise we
repeat the procedure described above with respect to the rightmost path of
(12.10) on which a non-atomic query occurs, and with regard to the last non-
atomic query of the path. This gives a new e-scenario for Q relative X∪Y which
either has the required properties or not. In the former case we do nothing, in
the latter we repeat the procedure once again. Since the number of non-atomic
queries of Σ is finite, after a finite number of steps we arrive at an atomic
e-scenario for Q relative to X ∪ Y . ut

What if Σ is an e-scenario for an atomic yes-no question? The construction
shows that Σ can be “atomized” on the condition that no direct answer to a
query of Σ involves the atom already present in Q. To be more precise, the
following holds:

Theorem 12.5. Let Σ be a non-atomic e-scenario for an atomic yes-no ques-
tion Q relative to a set of d-wffs X such that: (a) each query of Σ is a quantifier-
free question, and (b) the atom occurring in Q does not occur in any query of
Σ. Let Y be a set whose elements are disjunctions of all the direct answers to
risky queries of Σ such that for each risky query of Σ, exactly one disjunction
of all the direct answers to the query belongs to Y . There exists an e-scenario
Σ. for Q relative to X ∪ Y such that all the queries of Σ. are atomic yes-no
questions based on atoms that occur in the queries of Σ.

Proof. We reason similarly as in the proof of Theorem 12.4. Since Q is atomic,
dQ∩Y = ∅. Due to clause (b), dQ is not the set of direct answers to any question
of an e-scenario which is embedded. So the Embedding Theorem applies in each
case. ut

Finally, let us note:

Corollary 12.6. Let Σ be a non-atomic e-scenario for a question Q relative to
a set of d-wffs X such that each query of Σ is a quantifier-free safe question. If
Q is not an atomic yes-no question, then there exists an e-scenario Σ? for Q
relative to X such that all the queries of Σ? are atomic yes-no questions based
on atoms that occur in the queries of Σ.

Proof. By Theorem 12.4 (if each query of Σ is safe, then Y is empty). ut
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Corollary 12.7. Let Σ be a non-atomic e-scenario for an atomic yes-no ques-
tion Q relative to a set of d-wffs X such that: (a) each query of Σ is a quantifier-
free safe question, and (b) the atom occurring in Q does not occur in any query
of Σ. There exists an e-scenario Σ? for Q relative to X such that all the queries
of Σ? are atomic yes-no questions based on atoms that occur in the queries of
Σ.

Proof. By Theorem 12.5. ut

However, the claims of Theorem 12.4 and Theorem 12.5 (as well as of corol-
laries 12.6 and 12.7) cannot be generalized to these e-scenarios formulated in
L?
fom which involve queries that are not quantifier-free questions. On the other

hand, each question of L?
cpl is a quantifier-free question and thus the results

are fully general as long as the propositional case is concerned.

Remarks. The proof of Theorem 12.4 together with the proofs of lemmas
12.1, 12.2 and 12.3 give us some indications concerning a way of transforming
a non-atomic e-scenario into an atomic one. The idea is that of systematic
embedding. We fix Y . At the first step we embed for the last non-atomic query
of the rightmost path of Σ on which a non-atomic query occurs. Depending on
the form of the query, we build the atomic e-scenario for the query in a way
presented in the proof of the appropriate lemma (i.e. Lemma 12.1, or Lemma
12.2, or Lemma 12.3; in the latter case we make use of the relevant element of
Y ). The outcome is then embedded into Σ. At a consecutive step we embed
for the last non-atomic query of the rightmost path of the e-scenario obtained
at the previous step on which a non-atomic query occurs. Again, we embed the
atomic e-scenario obtained in the way presented in the proof of the appropriate
lemma. Moves of this kind are performed until an atomic e-scenario is arrived
at. The above schema can be turned into a procedure of transforming a non-
atomic e-scenario into an atomic one5, and then into an algorithm.

The case of the proof of Theorem 12.5 is similar.

Procedures sketched above operate from bottom to top: if a non-atomic
query Q∗ occurs on a path after a non-atomic query Q, we embed for Q∗

first. Yet, one can also perform systematic embedding from top to bottom. The
general idea is this. At each step we act upon the leftmost path on which a
non-atomic query occurs, and we embed for the non-atomic query with the
least index on the path. If the query is not a simple yes-no question, we em-
bed the appropriate standard decomposition e-scenario; otherwise we embed
the standard e-scenario for the main connective of the affirmative answer to
the query. The final result is an atomic e-scenario for the principal question
assuming that the conditions specified by the Embedding Theorem are met.

5 The procedure sketched above is, of course, not the only one possible. An interesting
variant does not require fixing Y in advance. The difference lies in “building” Y
step by step: once we arrive at a risky query, we choose a certain disjunction, D,
of all the direct answers to the query that is not in dQ, and we produce an atomic
e-scenario for the query relative to D.
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For a procedure of systematic embedding operating with standard decom-
position e-scenarios for connectives see  Lupkowski  Lupkowski (2010b). A com-
puter program that generates atomic e-scenarios for simple yes-no questions was
written in Prolog by Leszczyńska-Jasion.6 A rule-based approach to systematic
embedding (pertaining to the propositional case) is presented in Wísniewski
(2004a).

When dealing with the first-order level we operated with the language L?
fom .

The expressive power of this language, however, is rather limited. Its vocab-
ulary includes one-place predicates, identity, and individual constants, but no
n-place predicates and function symbols. Moreover, the erotetic part comprises,
besides whether-questions, only existential which-questions and general which-
questions. But nothing essential would change if we extended the vocabulary
with n-place predicates and/or function symbols, and the erotetic part with new
categories of questions – assuming that the conditions (sc1), (sc2) and (sc3)
specified in section 5.4.1 of Chapter 5 would still be fulfilled. As for semantics,
we only relied upon some basic facts concerning entailment, mc-entailment and
erotetic implication which are due to the meaning of propositional connectives
in Classical Logic.

6 The program can be downloaded from:
http://kognitywistyka.amu.edu.pl/intquestpro/
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E-scenarios and Problem Solving

The concept of e-scenario was introduced in order to model some aspects of
effective problem solving. Its applicability, however, has occurred to be wider.
E-scenarios are useful tools in the area of cooperative answering, in a modelling
of interrogator’s hidden agenda, and in an analysis of the Turing Test.1 Some
aspects of question answering can be modelled by means of e-scenarios as well.2

In this Chapter we concentrate on problem solving.

13.1 Two kinds of problem decomposition

One of the crucial principles which govern effective problem solving is the fol-
lowing:3

(DP) (Decomposition Principle): Decompose a principal problem (PP) into
simpler sub-problems (SPs) in such a way that solutions to SPs can be
assembled into an overall solution to PP.

When we consider a problem definite enough to be adequately expressed
by a question, its decomposition amounts, generally speaking, to finding an
appropriate collection of auxiliary questions. A decomposition can be static,
that is, resulting in finding a set of mutually independent auxiliary questions
such that once all of them are answered, the initial problem is resolved.4 Yet,
a more interesting case is that of dynamic decomposition that comes in stages:
the consecutive auxiliary questions (which constitute the sub-goals of the next
stage) depend on how the previous requests for information have been fulfilled.
The main goal, determined by the initial problem, remains unchanged, but sub-
goals are processed in a goal-directed way. Moreover, the erotetic decomposition
principle:

1 Cf.  Lupkowski (2010a), Urbański and  Lupkowski (2010),  Lupkowski (2010c),
 Lupkowski (2011).

2 See  Lupkowski (2012),  Lupkowski (2013), Wísniewski (201xa).
3 I owe this formulation of DP to Mariusz Urbański (see Bolotov et al. (2006)).
4 As for IEL, static decomposition is modelled in terms of reducibility of questions

to sets of questions (see section 7.6.2 of Chapter 7).
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(EDP) (Erotetic Decomposition Principle): Transform a principal question
into auxiliary questions in such a way that: (a) consecutive auxiliary ques-
tions are dependent upon previous questions and, possibly, answers to pre-
vious auxiliary questions, and (b) once auxiliary questions are resolved, the
principal question is resolved as well.

is obeyed until the initial problem becomes solved.

13.2 Dynamic decomposition via e-scenarios

13.2.1 Preliminary e-scenarios

Our claim is: when faced with a problem-solving task, it is advisable to build
a preliminary e-scenario for the question that expresses the problem just con-
sidered. The background of the e-scenario is provided by items of information
which are regarded as relevant to the case. The preliminary e-scenario can then
be dynamically transformed in response to information gradually collected and
by using the mechanisms of contraction and/or embedding.

An example can help to clarify the above claim.

Suppose that we aim at resolving the problem expressed by:

Where did Andrew leave for: Paris, London, or Rome?

and it is known, int. al., that:

Andrew left for Paris, London or Rome. (13.1)

If Andrew flew by Air France, then he left for Paris. (13.2)

If Andrew did not fly by Air France, then he did not leave for Rome. (13.3)

Andrew left for London if and only if he flew by BA or Rynair. (13.4)

A possible preliminary e-scenario is displayed in Figure 13.1.5 For conciseness,
we represent the set of initial premises (i.e. the set comprising the sentences
(13.1) – (13.4)) by [IP].

A preliminary e-scenario provides information about possible ways of solv-
ing the principal problem: it shows what additional data should be collected
and when they should be collected. The instructions provided are conditional :
if one receives answer A to query Q, query Q∗ should be asked next, if, however,
one receives answer B to Q, query Q∗∗ is the next one, etc. What is impor-
tant, the e-scenario provides the appropriate instruction for any of the direct
answers to the query: for each direct answer there is an instruction what to do
next.

Let us stress: the principal question together with items of knowledge re-
garded as relevant to the case do not uniquely determine what is the preliminary

5 As a matter of fact, the e-scenario depicted in Figure 13.1 is the compressed coun-
terpart of the already analysed (see section 9.2.2 of Chapter 9) e-scenario displayed
in Figure 9.2.
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Where did Andrew leave for: Paris, London, or Rome?

[IP]

Did Andrew fly by Air France?

Yes.
Andrew left for Paris.

No.
Did Andrew leave for London?

Did Andrew fly by BA, or by Rynair,
or by neither?

Did Andrew fly by BA?

Yes.
Andrew left for London.

No.
Did Andrew fly by Rynair?

Yes.
Andrew left
for London.

No.
Andrew left
for Paris.

Fig. 13.1. A preliminary e-scenario.

e-scenario. In practice, it is wise to start with a preliminary e-scenario which
has a relatively small number of queries. Moreover, one has to take into con-
sideration that questions differ as to the “costs” incurred in order to obtain
answers, where the costs are co-determined by such factors as the amounts of
effort and/or time needed for obtaining an answer, data costs and/or charges,
etc. It is advisable to use as queries only questions which are less “costly” than
the principal one. And, last but not least, there must be good reasons to believe
that answers to queries are available by accessible means.

A preliminary e-scenario is, in a sense, superfluous. The execution of the
scenario is supposed to proceed from top to bottom: one attempts to resolve
the first query and then, depending on the answer received, moves to the query
recommended by the e-scenario as the next one, and so forth. However, instruc-
tions based on answers different from those which have been actually received
(or hypothetically assumed; see below) will not be activated.

13.2.2 From query resolution to contraction

Looking from the formal point of view, success in resolving a query amounts
to the contraction of the e-scenario executed by the just received answer to the
query.

As an illustration, suppose that the first query of the e-scenario displayed in
Figure 13.1 has been answered with “Andrew flew by Air France”. The result
of contraction by the above answer is an e-derivation ending with “Andrew left
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for Paris”; the endpoint is a direct answer to the principal question. Moreover,
this answer is entailed by d-wffs which precede it in the derivation and thus is
true provided that all the preceding d-wffs of the derivation are true.

Now suppose that the answer “Andrew did not fly by Air France” has
been received. By contraction, the preliminary e-scenario transforms into the
e-scenario displayed in Figure 13.2. Although originating in the previous one,
this is a new e-scenario, which is supposed to be executed accordingly.

Where did Andrew leave for: Paris, London, or Rome?

[IP]

Andrew did not fly by Air France.
Did Andrew leave for London?

Did Andrew fly by BA, or by Rynair, or by neither?
Did Andrew fly by BA?

Yes.
Andrew left for London.

No.
Did Andrew fly by Rynair?

Yes.
Andrew left
for London.

No.
Andrew left
for Paris.

Fig. 13.2. The e-scenario resulting by contraction.

However, asking and successfully answering the first query of the scenario pre-
sented by Figure 13.2 can also be viewed as an execution of the instruction
already present in the preliminary e-scenario displayed in Figure 13.1.

13.2.3 Embedding as a rescue option

A query conceivably resolvable at a reasonable cost can occur unanswerable
by available means. When this happens, an advisable way out is to use the
mechanism of embedding.

For instance, suppose that an inquirer executing the e-scenario displayed
in Figure 13.2 faces a problem with the query “Did Andrew fly by BA?”. An
option is to embed a prospective e-scenario for the troublemaking query into
the e-scenario which involves the query.

Assume that the e-scenario presented by Figure 13.3 is prospective enough.

The result of embedding it into the e-scenario depicted in Figure 13.2 is
presented in Figure 13.4.

The e-scenario depicted in Figure 13.4 is supposed to be executed, starting
with its first query, i.e. “Does Andrew prefer convenience over savings?”. If the
answer received is affirmative, contraction by this answer gives an e-derivation
whose conclusion is: “Andrew left for London”. If, however, the answer received
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Did Andrew fly by BA?
Andrew flew by BA if he prefers convenience over savings;

otherwise he did not fly by BA.
Does Andrew prefer convenience over savings?

Yes.
Andrew flew by BA.

No.
Andrew did not fly by BA.

Fig. 13.3. An e-scenario to be embedded into the e-scenario displayed in Figure 13.2.

Where did Andrew leave for: Paris, London, or Rome?

[IP]

Andrew did not fly by Air France.
Andrew flew by BA if he prefers convenience over savings;

otherwise he did not fly by BA.
Did Andrew leave for London?

Did Andrew fly by BA, or by Rynair, or by neither?
Did Andrew fly by BA?

Does Andrew prefer convenience over savings?

Yes.
Andrew flew by BA.

Andrew left for London.

No.
Andrew did not fly by BA.
Did Andrew fly by Rynair?

Yes.
Andrew left
for London.

No.
Andrew left
for Paris.

Fig. 13.4. The result of embedding of the e-scenario displayed in Figure 13.3 into the
e-scenario depicted in Figure 13.2.

is negative, by contraction one arrives at the e-scenario displayed in Figure
13.5.6

A successful execution of the e-scenario depicted in Figure 13.5 gives, by con-
traction, either an e-derivation of “Andrew left for London” or an e-derivation
of “Andrew left for Paris“. Both are direct answers to the principal question.
The answer actually arrived at is true provided that all the d-wffs preceding it
at the path are true.

6 The scenario involves the auxiliary question “Did Andrew fly by BA?” which has
been already answered. However, this makes no harm since the question is not a
query. In order to avoid such effects we would have to complicate the definition of
contraction; sometimes already answered questions imply further questions, so an
already answered non-query can be safely deleted only if it does not perform this
role.
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Where did Andrew leave for: Paris, London, or Rome?

[IP]

Andrew did not fly by Air France.
Andrew flew by BA if he prefers convenience over savings;

otherwise he did not fly by BA.
Andrew does not prefer convenience over savings.

Andrew did not fly by BA.
Did Andrew leave for London?

Did Andrew fly by BA, or by Rynair, or by neither?
Did Andrew fly by BA?

Did Andrew fly by Rynair?

Yes.
Andrew left
for London.

No.
Andrew left
for Paris.

Fig. 13.5. The result of contraction of the e-scenario displayed in Figure 13.4 by the
negative answer to ‘Does Andrew prefer convenience over savings?’.

13.2.4 Other rescue options and gains from a failure

Embedding can help, but there is no guarantee of success. What if some of the
“new” queries remain unresolved? There are two possible rescue options. The
first is to backtrack the already performed embedding and then embed another
e-scenario for the troublemaking query. The second amounts to performing
further embedding(s) without backtracking.

Let us note that persistent failures in resolving a query need not be tan-
tamount to a complete failure. One can contract by an only hypothetically
accepted answer to a troublemaking query and then try to proceed further. If
one successfully proceeds with the consecutive queries recommended, the out-
come carries information of the following kind: the endpoint provides a right
solution to the initial problem on condition that the hypothetically accepted
answers to the troublemaking queries or query are right. The added value of
such outcome lies in an identification of knowledge gaps. However, if we rely
on an answer (to a query) which is not supported by a sufficient evidence, it
is likely that at some further point an unsound and/or unresolvable query will
be the recommended one.

Remarks. At each stage of the process sketched above, with the exception of
the last one, an e-scenario is executed. The consecutive e-scenario is dependent
upon the result of execution of the previous one. Note that it is the preliminary
e-scenario that is being transformed. As a consequence, the following desirable
property is retained: each path of an intermediate scenario leads to an answer
to the principal question. Thus the process as a whole is goal-directed, and the
sub-goals are processed in a goal-directed way. Recall that any e-scenario has
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the golden path property7 and describes a search plan with no “dead ends”:
the plan copes with any direct answer to a query.

However, a warning is in order. In the last stage of the process a solution
to the initial problem emerges as the endpoint of the e-derivation arrived at.
The solution is either a direct answer to the only query of the derivation or
is entailed by some preceding d-wffs of the derivation. But it cannot be said
that once the process is successfully completed, a “true” or “right” solution is
already found. Mere entailment is not enough: there must be good reasons to
believe that the premises involved and/or the answer to the query are true.8

13.2.5 Fine-tuning and systematic embedding

A preliminary e-scenario can be transformed in reaction to a success/failure in
resolving a query. However, both embedding and contraction are formal opera-
tions which can be performed on a preliminary e-scenario prior to its execution.
It is a rational strategy to estimate in advance both the chances of answering
queries and costs of answering them. If the former are low and/or the latter
are high, there is a possibility of “fine-tuning” the preliminary e-scenario by
embedding. The idea is to begin questioning after having in one’s disposal an
e-scenario whose first query is answerable by available means at reasonable
costs. The consecutive queries to be dealt with can be adjusted, if needed, in
further steps. In some cases even a kind of general adjustment can be recom-
mended. For instance, if there are good reasons to believe that atomic queries
are both more promising and less costly than other queries, it is reasonable to
transform the preliminary e-scenario into an atomic one and then execute the
atomic e-scenario just obtained. As we have shown in section 12.2 of Chap-
ter 12, in the case of e-scenarios whose queries are quantifier-free there are
procedures whose application produce an atomic e-scenario as the outcome.
Furthermore, the standard decomposition e-scenarios pertaining to queries can
always be embedded when needed. One can also systematically reduce the com-
plexity of quantifier-free yes-no questions occurring as queries by embedding
the standard e-scenarios for connectives. The decomposition e-scenarios and
scenarios for connectives can also be used as means of transforming intermedi-
ate e-scenarios.

Neither fine-tuning nor mere transformations of e-scenarios are sufficient to
solve a problem: we need answers to queries. However, there is one exception.
It can be shown that when one asks a yes-no question based on a CPL-valid
formula, builds the appropriate (determined by the main connective) standard

7 Cf. section 9.4 of Chapter 9.
8 When Classical Logic is the underlying logic of declaratives, any scenario for Q

relative to X which involves a query being a simple yes-no question can be trans-
formed into an e-scenario which has any direct answer to Q as an endpoint of
some path. It suffices to repeat the yes-no question. As a result, a pair of contra-
dictory sentences emerges at a path, so we can conclude with any direct answer to
Q. However, one cannot have good reasons to believe – dialetheism aside – that
contradictory sentences are both true.
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e-scenario and then transforms it consecutively by embedding (subjected to
some diagrammatic rules) without making any attempts to answer the emerg-
ing queries, the final outcome is an e-scenario whose paths leading to the neg-
ative answer are contradictory. This, by the Golden Path Theorem, amounts
to the affirmative solution of the principal problem (for details see Wísniewski
(2004a)). In other words, a systematic reflection on possible ways of reaching
alternative solutions is sufficient to establish the right solution: no information-
gaining moves are needed. Similarly, no information-gaining moves are needed
in order to build a Socratic proof: mere transformations of questions are suffi-
cient. So IEL throws a new light on the old idea of analyticity of logic.
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Wísniewski, A. (1997a), Some foundational concepts of erotetic semantics,

in M. Sintonen, ed., ‘Knowledge and Inquiry. Essays on Jaakko Hintikka’s
Epistemology and Philosophy of Science’, Rodopi, Amsterdam/New York,
pp. 181–211.
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Wísniewski, A. (2003), ‘Erotetic search scenarios’, Synthese 134, 389–427.
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