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Abstract
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of law-like statements are generated. We use the Socratic transformations
approach as the underlying proof method.
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1 Aims

If, as Jaakko Hintikka (2007, p. 38) claims, abduction constitutes the central
problem in contemporary epistemology, then designing an adequate logic of
abduction is one of the most important challenges faced by contemporary logic.
The logical structure of the well-known Peircean scheme of abductive reasoning
is this: from an observation that A (an abductive goal), and from the known rule
that if H, then A, infer H (an abductive hypothesis, or an abducible; cf (Peirce,
1958, 5.189)). However, this schema may be elaborated in detail in different
ways, which lead to different models of abduction (see Urbański (2016)).

Slightly expanding the Peircean scheme, we may claim that the aim of ab-
ductive reasoning is to fill, by means of a hypothesis H, a certain gap between
some dataset X (a database, a belief set, a body of knowledge) and a goal A,
unattainable from X. Let us stress that both abductive hypotheses and goals
may be, depending on the type of abductive reasoning, propositions, laws, rules,
or even theories (cf. Gabbay and Woods (2005); Magnani (2004, 2009)). One
important issue in research on abduction is whether filling this gap is intrinsi-
cally of explanatory character or not. If so, then abduction is, as a matter of
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fact, a version of the Inference to the Best Explanation (IBE), understood in the
sense of Harman (1965) or Lipton (2004), or according to some refined accounts
of IBE, for example Kuipers’ (2004) Inference to the Best Theory. If not, then
abduction may serve explanatory as well as predictive or purely deductive, or
in fact any other purposes. An example of this second stance is the algorithmic
perspective, proposed by Gabbay and Woods, according to which an abductive
hypothesis H “is legitimately dischargeable to the extent to which it makes it
possible to prove (or compute) from a database a formula not provable (or com-
putable) from it as it is currently structured” (Gabbay and Woods, 2005, p.
88).

We shall follow the latter point of view and focus on computational issues,
however with substantial explanatory flavour. Our purpose is to find a mecha-
nism by which one can arrive at abductive hypotheses having the form of law-like
statements (LLSs for short). We shall use the Socratic transformations (ST) ap-
proach (Wísniewski, 2004c) as a proof method on which hypotheses generation
mechanism will be based.

Our aim is not trivial. On the one hand, approaches to abduction based on
different proof methods do not produce LLSs as outcomes; examples include An-
alytic Tableaux method (Aliseda (1997, 2006)), sequent calculi (Mayer and Pirri
(1993)), dynamic proof method of adaptive logics (Meheus and Batens (2006);
Meheus et al. (2002); it should be noted that Gauderis and Van de Putte (2012)
offer account on abduction of generalizations within the adaptive logic frame-
work). The same holds for the approaches based on the ST method proposed
so far (see Urbański (2003), and Wísniewski (2004b)). On the other hand, even
though we agree that there is more to abduction than just IBE (cf. (Hintikka,
2007, p. 41–44)), there are also close affinities between abduction and search
for an explanation (see Thagard (1995, 2007)). As a result, a mechanism which
enables a “computation” of explanatory abductive hypotheses in the form of
LLSs seems highly attractive.

In this paper we shall not consider the problem of evaluation of abductive
hypotheses. This is a somewhat different issue which can be satisfactorily dealt
with by computer science rather than logical means. A convincing example is
offered in papers by Komosinski et al. (2014, 2012), where multi-criteria domi-
nance relation approach is employed.

2 Socratic transformations

The ST approach offers a formal explication of the idea of solving logical prob-
lems of entailment or derivability by pure questioning, that is, by transforming
the relevant initial question into consecutive questions without making any use
of answers to the questions just transformed. Such Socratic transformations
may be either successful or unsuccessful. Roughly, a successful transformation
ends with a question of a specified final form, which can be answered in only one
rational way. A successful transformation is a Socratic proof. Socratic trans-
formations are guided by erotetic rules1 which have only questions as premises
and conclusions. These rules form the core of erotetic calculi.

We appeal here to the interrogative idea for a reason. We share Hintikka’s
conviction that “the interrogative approach can be argued to be a general theory

1 “Erotetic” comes from Greek “erotema” which means “question”.
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of reasoning” (Hintikka et al., 1999, p. 47). Questions play far more important
role in problem solving than it is typically recognized. Moreover, when explicit
operations on questions, in the roles of premises or conclusions, are allowed
in formal modeling of such processes, the payoff is a substantially more robust
insight both into their real structure and into their computational properties. In
order to justify these claims by some case-study examples we refer the reader to,
int. al., Wísniewski (2004a), Bolotov et al. (2006), Leszczyńska (2007), Urbański
and  Lupkowski (2010). However, although Jaakko Hintikka is nowadays one of
the best-known advocates of the interrogative idea, we rely here on different
assumptions and on a different approach to the logic of questions.

We shall show how the ST approach works on the example of the EPQ

calculus, on which our abductive mechanism will be based (see section 3). EPQ

is an erotetic counterpart of Pure Calculus of Quantifiers (PQ). Our presentation
of this calculus will be based on the one given in Leszczyńska-Jasion et al.
(2013). Detailed account on ST can be found, e. g., in Wísniewski (2004c) and
Wísniewski and Shangin (2006). For elaboration of an erotetic background of
ST, which is Inferential Erotetic Logic, see Wísniewski (1995, 2013).

2.1 Language

Let us start with a language L of PQ with ¬ (negation), → (implication), ∧
(conjunction) and ∨ (disjunction) as primitive connectives, and both ∀ (general
quantifier) and ∃ (existential quantifier). The language L contains individual
parameters, but it does not contain function symbols or identity. By a term of
L we mean an individual variable or a parameter. We assume the usual notions
of well-formed formula (wff) and sentence of L. Now, let us extend L with a
question-forming operator ? and the sign `. The resulting language L∗ has two
disjoint categories of meaningful expressions: declarative well-formed formulas
(hereafter: d-wffs), and questions. Questions of L∗ are based on sequences of
atomic d-wffs of L∗, that is, expressions of the form:

S ` A

where S is a finite sequence (possibly empty) of sentences of L, and A is a
sentence of L. A pure sentence is a sentence of L with no individual parameters.
Note that atomic d-wffs of L∗ are (single-conclusioned) sequents. A sequent is
called pure if it contains only pure sentences.

In what follows we will refer to atomic d-wffs of L∗ simply as to sequents,
yet always having in mind that only sequents with single sentences of L in the
succedent are taken into consideration. We use Greek lower case letters φ, ψ,
χ, ω (possibly with subscripts) as metavariables for sequents, and Greek upper
case letters Φ, Ψ, Γ as variables for sequences of sequents.

A question of the language L∗ is an expression of the form:

? (Φ)

where Φ is a non-empty finite sequence of sequents; the terms of this sequence
are called constituents of the question, and we say that the question is based on
the sequence.

Some notational conventions will be useful. The following:
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S ′ T

stands for the concatenation of sequences S and T of PQ-formulas. By

S ′ A

we refer to the concatenation of S and the one-term sequence 〈A〉, where A is a
PQ-wff. The concatenation of sequences Φ and Ψ of sequents is referred to as:

Φ; Ψ

whereas the inscription:

Φ;φ

denotes the concatenation of a sequence of sequents Φ and the one-term sequence
〈φ〉, where φ is a sequent. Of course, the inscription:

Φ;φ; Ψ

refers to the concatenation of Φ;φ and a sequence of sequents Ψ. Any of S,
T , Φ, and Ψ can be empty.

Thus when Φ = 〈φ1, . . . , φn〉, the corresponding question can be written as:

? (φ1; . . . ;φn)

and we will proceed that way. If Φ = 〈φ〉, then we write the question as:

? (φ)

and we say that the question is based on a single-conclusioned sequent.
A question of the form: ? (S1 ` A1; . . . ;Sn ` An) can read: “Is it the case

that: A1 is PQ-entailed by S1 and . . . and An is PQ-entailed by Sn?”; due to
the completeness of PQ, “PQ-entailed by” can be replaced by “PQ-derivable
from.” (By entailment by/derivability from a sequence we mean entailment
by/derivability from the set of all the terms of the sequence.) When n = 1, the
question pertains to the claim of a single sequent.

2.2 The calculus EPQ

In a Socratic transformation one transforms a question into another question.
Here is the list of erotetic rules that govern the relevant transformations of
questions of L∗:
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Lα :
? (Φ;S ′ α ′ T ` C; Ψ)

? (Φ;S ′ α1
′ α2

′ T ` C; Ψ)
Rα :

? (Φ;S ` α; Ψ)

? (Φ;S ` α1;S ` α2; Ψ)

Lβ :
? (Φ;S ′ β ′ T ` C; Ψ)

? (Φ;S ′ β1 ′ T ` C;S ′ β2 ′ T ` C; Ψ)
Rβ :

? (Φ;S ` β; Ψ)

? (Φ;S ′ β∗1 ` β2; Ψ)

L¬¬ :
? (Φ;S ′ ¬¬A ′ T ` C; Ψ)

? (Φ;S ′ A ′ T ` C; Ψ)
R¬¬ :

? (Φ;S ` ¬¬A; Ψ)

? (Φ;S ` A; Ψ)

L∀ :
?(Φ;S ′ ∀xiA ′ T ` B; Ψ)

?(Φ;S ′ ∀xiA ′ A(xi/τ) ′ T ` B; Ψ)
R∀ :

?(Φ;S ` ∀xiA; Ψ)

?(Φ;S ` A(xi/τ); Ψ)

provided that xi is free in A, provided that xi is free in A,
τ is any parameter and τ is a parameter which

does not occur in S nor in A

L∃ :
?(Φ;S ′ ∃xiA ′ T ` B; Ψ)

?(Φ;S ′ A(xi/τ) ′ T ` B; Ψ)
R∃ :

?(Φ;S ` ∃xiA; Ψ)

?(Φ;S ′ ∀xi¬A ` A(xi/τ); Ψ)

provided that xi is free in A, provided that xi is free in A,
and τ is a parameter which τ is any parameter
does not occur in S,A, T,B

Lκ :
?(Φ;S ′ κ ′ T ` C; Ψ)

?(Φ;S ′ κ∗ ′ T ` C; Ψ)
Rκ :

?(Φ;S ` κ; Ψ)

?(Φ;S ` κ∗; Ψ)

We shall call rules Rα and Lβ branching rules, as the resulting “question-
conclusion” has more constituents than the “question-premise”. Consequently,
we will call the remaining erotetic rules non-branching rules (in particular, the
quantificational rules of EPQ are non-branching). The letters “L” and “R”
indicate that the appropriate rule “operates” on the left or right side of the
turnstile `. For brevity, we have used the α, β–notation. This is explained in
the following table (see Smullyan (1995)):

α α1 α2 β β1 β2 β∗1
A ∧B A B ¬(A ∨B) ¬A ¬B A
¬(A ∨B) ¬A ¬B A ∨B A B ¬A
¬(A→ B) A ¬B A→ B ¬A B A

β∗1 may be called the complement of β1.
Rules Lκ and Rκ cover the cases of quantifiers in the scope of negation and

dummy quantification according to the following table:

κ κ∗

¬∀xiA ∃xi¬A
¬∃xiA ∀xi¬A
∀xiA, where xi is not free in A A
∃xiA, where xi is not free in A A

It is easily visible that the rules of EPQ are designed in such a way that
each constituent of the “question-conlusion” is PQ-valid if and only if each
constituent of the “question-premise” is PQ-valid. On the other hand, it can
be shown that each application of a rule of EPQ retains validity (in the sense
of Inferential Erotetic Logic) of the corresponding erotetic inference. For a

5



justification of the above claims see Wísniewski (2004c) and Wísniewski and
Shangin (2006).

The concept of Socratic transformation is given by the following definition:

Definition 1. A sequence 〈s1, s2, . . .〉 of questions is a Socratic transformation
of a question ? (S ` A) via the rules of an erotetic calculus EPQ iff the following
conditions hold:

(i) s1 = ? (S ` A);

(ii) si, where i > 1, results from si−1 by an application of an erotetic rule of
EPQ.

Consider the following example (Leszczyńska-Jasion et al., 2013, p. 977) of
a Socratic transformation of sequent ` ∃xP (x) ∨ ∃xQ(x)→ ∃x(P (x) ∨Q(x)):

Example 1.

1.?(` ∃xP (x) ∨ ∃xQ(x)→ ∃x(P (x) ∨Q(x)) Rβ

2.?(∃xP (x) ∨ ∃xQ(x) ` ∃x(P (x) ∨Q(x))) Rβ

3.?(∃xP (x) ` ∃x(P (x) ∨Q(x)) ; ∃xQ(x) ` ∃x(P (x) ∨Q(x))) L∃

4.?(P (a) ` ∃x(P (x) ∨Q(x)) ; ∃xQ(x) ` ∃x(P (x) ∨Q(x))) R∃

5.?(P (a), ∀x¬(P (x) ∨Q(x)) ` P (a) ∨Q(a) ; ∃xQ(x) ` ∃x(P (x) ∨Q(x))) Rβ

6.?(P (a), ∀x¬(P (x) ∨Q(x)),¬P (a) ` Q(a) ; ∃xQ(x) ` ∃x(P (x) ∨Q(x))) L∃

7.?(P (a), ∀x¬(P (x) ∨Q(x)),¬P (a) ` Q(a) ; Q(a) ` ∃x(P (x) ∨Q(x))) R∃

8.?(P (a), ∀x¬(P (x) ∨Q(x)),¬P (a) ` Q(a) ; Q(a), ∀x¬(P (x) ∨Q(x)) ` P (a) ∨Q(a)) Rβ

9.?(P (a), ∀x¬(P (x) ∨Q(x)),¬P (a) ` Q(a) ; Q(a), ∀x¬(P (x) ∨Q(x)),¬P (a) ` Q(a))

The last question of the above sequence has an interesting property: the
affirmative answer to it is, in a sense, evident, as all the constituents of this
question express some basic facts about (PQ) entailment. Thus, the answer to
the first question of the sequence is also affirmative: it is true that ∃xP (x) ∨
∃xQ(x) → ∃x(P (x) ∨ Q(x)) is entailed by the empty set, and the sequence of
example 1 is not just a transformation: it is a successful transformation, that
is, a proof.

Definition 2. Let S ` A be a pure sequent. A finite Socratic transformation
〈Q1, . . . , Qn〉 of question ? (S ` A) via the rules of EPQ is a Socratic proof of
sequent S ` A in the calculus EPQ iff for each constituent φ of Qn:

(a) φ is of the form T ′ B ′ U ` B, or

(b) φ is of the form T ′ B ′ U ′ ¬B ′ W ` C, or

(c) φ is of the form T ′ ¬B ′ U ′ B ′ W ` C.

Constituents/sequents of the form (a), (b) and (c) are called successful.

In what follows by a successful (unsuccessful) Socratic transformation we
will mean a Socratic transformation which is (which is not) a Socratic proof.

Calculus EPQ pertains to the Pure Calculus of Quantifiers in the following
sense:

Theorem 1. Let S ` A be a pure sequent. S ` A is provable in EPQ iff S ` A
is PQ-valid.

The reader will find the proof in Wísniewski and Shangin (2006).
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3 A view from EPQ

Now we are in a position to define an abductive mechanism which makes use of
EPQ. We assume that the initial question of a Socratic transformation is based
on a pure sequent (i.e. a sequent which involves only parameter-free sentences).
This is not required by EPQ (only Socratic proofs are supposed to start with
that way), but we impose this restriction for a reason.

A law-like statement (LLS) is a first-order sentence of the form:

∀xi1 . . . ∀xin(A(xi1 , . . . , xin)→ B(xi1 , . . . , xin))

where A(xi1 , . . . , xin) and B(xi1 , . . . , xin) are parameter-free sentential func-
tions which involve xi1 , . . . , xin as the only free variables. We consider LLS’s
which are expressions of L. Let A(xi/τ) designate a sentence which results from
a sentential function Axi (xi is here the only free variable of A) by the replace-
ment of (each occurrence of) variable xi by parameter τ . According to the rules
of EPQ, a wff of the form A(xi/τ) occurs in a constituent of a question of a
Socratic transformation of the considered kind due to an application of any of
the rules: L∀, R∀, L∃, R∃, and is always a sentence. Moreover, such a formula
never occurs in an initial question (sequent) of a Socratic proof (because the
initial question has to be based on a pure sequent).

We introduce the following rule of abduction:

(abd) ?(Φ;S′A(xi/τ)′T ` B(xi/τ); Ψ)

?(Φ;S′A(xi/τ)′T ′∀xi(Axi → Bxi) ` B(xi/τ); Ψ)

Observe that we require that τ must replace xi both in Axi and in Bxi;
in other words, it is required that the appropriate sentential functions (recall
that each of them occurs in a sequent in the scope of a quantifier) must share
a free variable and that this variable has been replaced by τ in both cases. In
general, this is not univocal, but since we are going to extend a given Socratic
transformation which starts with a question based on a pure sequent, univocality
is retained.

Rule (abd) is supposed to be applied when we have an unsuccessful con-
stituent in the last question of a completed Socratic transformation. Of course,
it is not the case that (abd) is always applicable; for example, (abd) is not
applicable to the last term of the following unsuccessful Socratic transformation
(in order to improve readability, from now on we highlight a formula which the
rule indicated to the right operates on):

1. ?( ∃x1Px1 ` ∀x1Px1) L∃

2. ?(Pτ1 ` ∀x1Px1 ) R∀
3. ?(Pτ1 ` Pτ2)

Observe that rule (abd), if applicable, enables us to “compute” a LLS given
that τ is the only parameter of A(xi/τ) and B(xi/τ) (recall that a LLS must
be parameter-free). If there are more parameters involved, the situation is more
complicated (see below). Of course, unlike other rules, (abd) does not preserve
joint validity from top to bottom.
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Definition 3. By an abductive extension of an unsuccessful finite Socratic
transformation s = Q1, . . . , Qn of ?(S ` A) via EPQ we mean a finite sequence
of questions Q∗1, . . . , Q

∗
n, Q

∗
n+1, . . . , Q

∗
u such that:

1. Qi = Q∗i for i = 1, . . . , n,

2. Q∗m+1 results from Q∗m by (abd) for m = n, n+ 1, . . . , u− 1,

3. rule (abd) is applied only with respect to unsuccessful constituents,

4. if rule (abd) has been applied with respect to k-th constituent of m-th
(n ≤ m < u) question, then rule (abd) is not applied with respect to k-th
constituent of any question with an index greater than m.

By a proto-abducible of an abductive extension of s we mean any wff intro-
duced to a constituent of a question of s by means of an application of rule
(abd). We say that an abductive extension is completed if each constituent of
the last question of it is either successful or involves a proto-abducible left of
the turnstile.

Clause 4 of definition 3 amounts to the requirement that (abd) is applied
only once with respect to a given unsuccessful constituent of the last question
of s (observe that (abd) is not a branching rule). In the case of a completed
abductive extension of s rule (abd) has been applied to each unsuccessful con-
stituent of the last question of s (these constituents are rewritten to consecutive
questions and are dealt with step by step).

Example 2. (space between lines indicates where the analysed unsuccessful ST
ends; the proto-abducible is underlined)

1. ?(∀x1Px1 ` ∀x1Rx1 ) R∀

2. ?( ∀x1Px1 ` Rτ1) L∀

3. ?(∀x1Px1, P τ1 ` Rτ1 ) (abd)

4. ?(∀x1Px1, P τ1,∀x1(Px1 → Rx1) ` Rτ1)

Observe that ∀x1Px1 2 ∀x1Rx1, but {∀x1Px1,∀x1(Px1 → Rx1)} � ∀x1Rx1.

Example 3.

1. ?(∀x1(Px1 → Rx1) ` ∀x1(Px1 → Gx1) ) R∀

2. ?(∀x1(Px1 → Rx1) ` Pτ1 → Gτ1 ) R→

3. ?( ∀x1(Px1 → Rx1) , P τ1 ` Gτ1) L∀

4. ?(∀x1(Px1 → Rx1), P τ1 → Rτ1 , P τ1 ` Gτ1) R→
5. ?(∀x1(Px1 → Rx1),¬Pτ1, P τ1 ` Gτ1; (abd)

∀x1(Px1 → Rx1), Rτ1 , P τ1 ` Gτ1 )

6. ?(∀x1(Px1 → Rx1),¬Pτ1, P τ1 ` Gτ1;
∀x1(Px1 → Rx1), Rτ1, P τ1,∀x1(Rx1 → Gx1) ` Gτ1)

Again, we have {∀x1(Px1 → Rx1),∀x1(Rx1 → Gx1)} � ∀x1(Px1 → Gx1).
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The above unsuccessful transformation 1–5 of example 3 can also be ex-
tended to:

6’. ?(∀x1(Px1 → Rx1),¬Pτ1, P τ1 ` Gτ1;
∀x1(Px1 → Rx1), Rτ1, P τ1,∀x1(Px1 → Gx1) ` Gτ1)

In this case, however, the proto-abducible is trivial, that is, it is identical with
the sentence which stays right to the turnstile in the initial question (sequent).

Now, observe that in both cases we can “add” the proto-abducible to the
“premises” of the initial sequent and we receive a successful Socratic transfor-
mation of the question obtained in this way (see examples 4 and 5).

Example 4.

1. ?(∀x1Px1,∀x1(Px1 → Rx1) ` ∀x1Rx1 ) R∀

2. ?( ∀x1Px1 ,∀x1(Px1 → Rx1) ` Rτ1) L∀

3. ?(∀x1Px1, P τ1, ∀x1(Px1 → Rx1) ` Rτ1) L∀

4. ?(∀x1Px1, P τ1,∀x1(Px1 → Rx1), P τ1 → Rτ1 ` Rτ1) L→
5. ?(∀x1Px1, P τ1,∀x1(Px1 → Rx1),¬Pτ1 ` Rτ1;

∀x1Px1, P τ1,∀x1(Px1 → Rx1), Rτ1 ` Rτ1)

Example 5.

1. ? ?(∀x1(Px1 → Rx1),∀x1(Rx1 → Gx1) ` ∀x1(Px1 → Gx1) ) R∀

2. ? ?(∀x1(Px1 → Rx1),∀x1(Rx1 → Gx1) ` Pτ1 → Gτ1 ) R→

3. ?( ∀x1(Px1 → Rx1) ,∀x1(Rx1 → Gx1), P τ1 ` Gτ1) L∀

4. ?(∀x1(Px1 → Rx1), P τ1 → Rτ1 ∀x1(Rx1 → Gx1), P τ1 ` Gτ1) L→
5. ?(∀x1(Px1 → Rx1),¬Pτ1,∀x1(Rx1 → Gx1), P τ1 ` Gτ1; L∀

∀x1(Px1 → Rx1), Rτ1, ∀x1(Rx1 → Gx1) , P τ1 ` Gτ1)

6. ?(∀x1(Px1 → Rx1),¬Pτ1,∀x1(Rx1 → Gx1), P τ1 ` Gτ1; L→
∀x1(Px1 → Rx1), Rτ1,∀x1(Rx1 → Gx1), Rτ1 → Gτ1 , P τ1 ` Gτ1)

7. ?(∀x1(Px1 → Rx1),¬Pτ1,∀x1(Rx1 → Gx1), P τ1 ` Gτ1;
∀x1(Px1 → Rx1), Rτ1,∀x1(Rx1 → Gx1),¬Rτ1, P τ1 ` Gτ1;
∀x1(Px1 → Rx1), Rτ1,∀x1(Rx1 → Gx1), Gτ1, P τ1 ` Gτ1)

The above observation can be generalized. The following holds:

Theorem 2. Let S ` A be a pure sequent, s be a finite unsuccessful Socratic
transformation of ?(S ` A) via the rules of EPQ, and s∗ be a completed abductive
extension of s such that all the proto-abducibles of s∗ are parameter-free. Let S∗

be a sequence of all the proto-abducibles of s∗. The sequent S′S∗ ` A is provable
in EPQ and thus A is CL-entailed by the set made up of all the terms of the
sequence S′S∗.

Proof. Let us observe that we can assign to each unsuccessful constituent of
the last question of s exactly one proto-abducible, namely that one which is
introduced when rule (abd) is applied with respect to this constituent. To put
it differently: if i-th constituent of the last question of s is unsuccessful, then
there exists a proto-abducible which was introduced in s∗ when rule (abd) was
applied with respect to i-th constituent of a question of s∗ of an index equal

9



or greater to the index of the last question of s (recall that (abd) is a non-
branching rule, and, since s∗ is completed, each unsuccessful constituent of the
last question is “dealt with” in some question of s∗).

We take s and modify it as follows:

(a) we replace each sequent, T ` C, which is a constituent of a question of
s, with the sequent T ′S∗ ` C; note that S ` A transforms into a pure
sequent S′S∗ ` A. Then we proceed analogously as in s;

(b) we take the leftmost unsuccessful constituent of the last question of the
transformation received from s in the above manner. Since S∗ always
occurs left of the turnstile, this constituent is a sequent of the form:

U ′A(xi/τ)′W ′∀xi(Axi → Bxi)
′Z ` B(xi/τ)

Now we apply rule L∀ with respect to the above constituent and we obtain
the following constituent (of the same index) in the next question:

($) U ′A(xi/τ)′W ′ < ∀xi(Axi → Bxi), A(xi/τ)→ B(xi/τ) >′ Z `
B(xi/τ)

In the next step we apply rule L→ with respect to ($) and we obtain two
“new” successful sequents at the place where ($) has occurred;

(c) we repeat the procedure described in (b) with regard to the leftmost un-
successful constituent of the question obtained at the previous step.

It is clear that the above procedure terminates in a finite number of steps
and thus produces a finite Socratic transformation of ?(S′S∗ ` A). Since unsuc-
cessful constituents are eliminated step by step, we end with a Socratic proof of
S′S∗ ` A. Therefore, by soundness of EPQ, A is PQ-entailed by the set made
up of all the terms of S′S∗. This completes the proof.

In order to obtain a general scheme we need a method of extraction of LLS’s
from proto-abducibles which involve parameters.

Since, by definition, both parts of an LLS must share variables, for our
purposes we consider the case in which all the proto-abducibles introduced by
(abd) are of the form:

(#) ∀xi(A(xi, xi1/τ1, . . . , xin/τn)→ B(xi, xi1/τ
′
1, ..., xin/τ

′
n))

where xi, xi1 , . . . , xin are distinct variables, τi need not be distinct from τ ′i (al-
though can be), and τ1, . . . , τn, as well as τ ′1, . . . , τ

′
n, need not be pairwise dis-

tinct. Again, (#) is univocal due to the fact that a given unsuccessful Socratic
transformation is the starting point. If (#) is a proto-abducible of the consid-
ered kind and τi = τ ′i for 1 ≤ i ≤ n, then the following

∀xi1 . . . ∀xin∀xi(A(xi, xi1 , . . . , xin)→ B(xi, xi1 , . . . , xin)) (1)

is the abducible corresponding to (#). If, however, τi 6= τ ′i for some (but not
all) i, where 1 ≤ i ≤ n, then the abducible corresponding to (#) falls under the
schema:

∀xj1 . . . ∀xjk∀xi(∃xjk+1
. . . ∃xjnA(xi, xj1 , . . . , xjn) (2)
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→ ∀xjk+1
. . . ∀xjnB(xi, xj1 , . . . , xjn))

where xjk . . . xjk are all the variables among xi1 , . . . , xin which are replaced
in (#) by the same parameters in the antecedent and the consequent, and
xjk+1

. . . xjn are all the variables among xi1 , . . . , xin which are replaced in (#)
by distinct parameters in the antecedent and the consequent. Finally, if τi 6= τ ′i
for all i, where 1 ≤ i ≤ n, then the abducible has the form:

∀xi(∃xi1 . . . ∃xinA(xi, xi1 , . . . , xin)→ ∀xi1 . . . ∀xinB(xi, xi1 , . . . , xin)) (3)

Note that in either case the abducible involves the “original” variables which
were replaced by parameters during the initial Socratic transformation. Note
also that in each case the abducible constitutes an LLS.

Example 6. (for brevity, we use x for x1, and y for x2)

1. ?(∀x∃yPxy ` ∃y∀xPxy ) R∃

2. ?(∀x∃yPxy, ∀y¬∀xPxy ` ∀xPxτ1) L∀

3. ?(∀x∃yPxy,∀y¬∀xPxy,¬∀xPxτ1 ` ∀xPxτ1 ) R∀

4. ?(∀x∃yPxy,∀y¬∀xPxy, ¬∀xPxτ1 ` Pτ2τ1) L¬∀

5. ?(∀x∃yPxy,∀y¬∀xPxy, ∃x¬Pxτ1 ` Pτ2τ1) L∃

6. ?(∀x∃yPxy,∀y¬∀xPxy, ¬Pτ3τ1 ` Pτ2τ1 ) (abd)

7. ?(∀x∃yPxy,∀y¬∀xPxy,¬Pτ3τ1,∀y(¬Pτ3y → Pτ2y) ` Pτ2τ1)

The abducible is ∀y(∃x¬Pxy → ∀xPxy). Observe that the abducible is CL-
equivalent to ∀x∀yPxy.

In order to obtain a Socratic proof of

∀x∃yPxy,∀y(∃x¬Pxy → ∀xPxy) ` ∃y∀xPxy

it is sufficient to add the abducible left of the turnstile in the initial sequent of
example 6, proceed as above, apply rule L∀ to the abducible w.r.t. τ1, apply rule
L→, apply rule L¬∃ to ¬∃x¬Pxτ1 just obtained, apply rule L∀ to ∀x¬¬Pxτ1
w.r.t. τ3, and apply rule L∀ to ∀xPxτ1 w.r.t. τ2.

One can prove the following:

Theorem 3. Let S ` A be a pure sequent. Let s be a finite unsuccessful Socratic
transformation of ?(S ` A) via the rules of EPQ, and let s∗ be a completed
abductive extension of s such that all the proto-abducibles of s∗ are of the form
(#) specified above. Let S∗∗ be a sequence of all the abducibles which correspond
to the proto-abducibles of s∗. Then the sequent S′S∗∗ ` A is provable in EPQ

and thus A is CL-entailed by the set made up of all the terms of the sequence
S′S∗∗.

Proof. If an abducible falls under the schema (1), we proceed similarly as in
the proof of Theorem 2. Suppose that an abducible is of the form (2) or
of the form (3). One can get from it ¬A(xi/τ, xi1/τ1, . . . , xin/τn) as well as
B(xi/τ, xi1/τ

′
1, . . . , xin/τ

′
n).
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An unsuccessful Socratic transformation can be abductively extended if only
rule (abd) is applicable to the unsucessful constituent(s) of the transformation,
regardless of whether entailment/derivability holds in the initial sequent. Hence
a practical problem arises: at which point one should give up in applying the
rules of EPQ and apply rule (abd)? There is no general solution to this problem.
A practical advice might be: if you end with a question whose unsuccessful
constituent(s) involve only atomic sentences right of the turnstile, and atomic
sentences as well as compound formulas of the form ∀xiD (where xi is free in D)
left of the turnstile, try to apply rule (abd). When you end with a completed
abductive extension, the relevant abducibles either describe prospective goals of
further deductions from accessible premises/databases (if these deductions are
successfully completed, a positive solution to the main problem is arrived at)
or are hypotheses to be tested (if tested with a success, you know that your
problem can be resolved by means of new data).

By the way, the mechanism sketched above can be applied in proof-heuristics.

4 A view from EAPQ

The calculus EAPQ (‘A’ stands for ‘applied’) differs from EPQ in language: now
individual constants may occur in sequents, including the sequents to be (So-
cratically) proven. Moreover, instead of rules L∀ and R∃ of EPQ, we now have:

LA∀
?(Φ;S′∀xiA′T ` B; Ψ)

?(Φ;S′∀xiA′A(xi/ξ)′T ` B; Ψ)

provided that xi is free in A; ξ is a parameter or an individual constant

RA
∃

?(Φ;S ` ∃xiA; Ψ)

?(Φ;S′∀xi¬A ` A(xi/ξ); Ψ)

provided that xi is free in A; ξ is a parameter or an individual constant

The remaining rules of EAPQ are those of EPQ.
The practical difference is that we are now able to consider abduction of

LLS’s on the basis of premises in which individual constants occur (and thus we
touch the problem of explanation of facts by laws). The formal mechanism of
abduction is the same as in the case of EPQ, however. The rule (abd) is not
modified, so these are only the shared parameters that count.

A weakening of the rule (abd) in the following way:

(abd’) ?(Φ;S′A(xi/ξ)
′T ` B(xi/ξ); Ψ)

?(Φ;S′A(xi/ξ)′T ′∀xi(Axi → Bxi) ` B(xi/ξ); Ψ)

where ξ is a parameter or an individual constant

raises a formal problem, since A(xi/ξ) and B(xi/ξ) are not univocal with respect
to initial premises in which individual constants occur. Moreover, philosophical
generality connected with the use of parameters is lost. On the other hand,
some examples are appealing (see examples 7 and 8).

Example 7.

1. ?( Pa ` Ra ) (abd’)
2. ?(Pa,∀x1(Px1 → Rx1) ` Ra)

12



Example 8.

1. ?(Pa→ Ra ` Pa→ Ga ) R→
2. ?( Pa→ Ra , Pa ` Ga) L→
3. ?(¬Pa, Pa ` Ga; Ra , Pa ` Ga ) (abd’)
4. ?(¬Pa, Pa ` Ga;Ra, Pa, ∀x1(Rx1 → Gx1) ` Ga)

A possible solution is to restrict (abd’) to atomic sentences which share an
individual constant and are parameter-free. Now A(γ) stands for a parameter-
free atomic sentence in which individual constant γ occurs, and similarly for
B(γ). We would have (abd) and the following:

(abd”) ?(Φ;S′A(γ)′T ` B(γ); Ψ)

?(Φ;S′A(γ)′T ′∀xi(Axi → Bxi) ` B(γ); Ψ)

Example 9.

1. ?( Pa ∨Ra ` Ga) L∨
2. ?( Pa ` Ga ;Ra ` Ga) (abd”)

3. ?(Pa,∀x1(Px1 → Gx1) ` Ga; Ra ` Ga ) (abd”)

4. ?(Pa,∀x1(Px1 → Gx1) ` Ga;Ra,∀x1(Rx1 → Gx1) ` Ga)

Observe that is not required that the “shared” individual constant occupies
the same position in A and in B (see example 10).

Example 10.

1. Pab ` Rca (abd”)
2. Pab,∀x1(Px1b→ Rcx1) ` Rca

A generalization of (abd”) to the case when there are more shared indi-
vidual constants is obvious. It is unclear, however, how to define abductive
extensions of unsuccessful Socratic transformations, because a “mixed” case
(shared parameters and shared individual constants) may arise.

5 Concluding remarks

The algorithmic perspective offers a very broad account on abductive reasoning.
One may even claim that it is too generous, and this claim can be expressed in
Hintikka’s (2007, p. 45) terms of distinction between definitory and strategic
rules of inference as follows. In the algorithmic perspective focus on effective
computability of a solution to an abductive problem may lead to overrating
move-by-move correctness of a reasoning, determined by the definitory rules.
This, in turn, results in underestimating the role of strategic rules, constituting
the essence of abduction as an ampliative reasoning (Hintikka, 2007, p. 45–52).
Thus procedures defined within the algorithmic perspective may fail to meet
the criteria for full-fledged abduction. In our opinion there are two possible
ways of responding to such a claim. The first one would involve conceptual
considerations on the very nature of abduction, which we do not pursue in this
paper. The second one is of slightly functional but still legitimate character.
Our purpose here was to find a mechanism by which abductive hypotheses in the
form of law-like statements can be generated. Bearing in mind the distinction
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between abductive process and product (Aliseda, 2006, p. 32) we do not claim
that this mechanism is itself abductive, that is, that we described some kind of
mental logic of abduction. What we did is this: psychological adequacy apart,
we characterized an effective way of computing formulas of well-defined form of
law-like statements, which may play the role of abducibles in certain contexts.
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Bolotov, A.,  Lupkowski, P., and Urbański, M. (2006). Search and check. Prob-
lem solving by problem reduction. In Cader, A., Rutkowski, L., Tadeusiewicz,
R., and Zurada, J., editors, Artificial Intelligence and Soft Computing, pages
505–510. Academic Publishing House EXIT, Warszawa.

Gabbay, D. M. and Woods, J. (2005). The Reach of Abduction. Insight and
Trial. Elsevier.

Gauderis, T. and Van de Putte, F. (2012). Abduction of generalizations. Theo-
ria, 27(3):345–363.

Harman, G. (1965). Inference to the best explanation. Philosophical Review,
74(1):88–95.

Hintikka, J. (2007). Abduction – inference, conjecture, or an answer to a ques-
tion? In Socratic Epistemology. Explorations of Knowledge-Seeking by Ques-
tioning, pages 38–60. Cambridge University Press.

Hintikka, J., Halonen, I., and Mutanen, A. (1999). Interrogative logic as a
general theory of reasoning. In Inquiry as Inquiry: A Logic of Scientific
Discovery, volume 5 of Jaakko Hintikka Selected Papers, pages 47–90. Kluwer
Academic Publishers, Dordrecht/Boston/London.
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Wísniewski, A. (2004a). Erotetic search scenarios, problem-solving, and deduc-
tion. Logique et Analyse, 185–188:139–166.

15



Wísniewski, A. (2004b). A note on abduction and consistency checks by Socratic
transformations. Manuscript.
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