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1. Introduction

Inferential Erotetic Logic (IEL) is a logic that analyzes inferences in which questions perform the
role of conclusions and provides an account of validity of these inferences. The idea of IEL originates
from the late 1980s, but IEL was developed in depth in the 1990s as an alternative to the received
view in the logic of questions, which situated the structure of questions and the question-answer
relationship in the center of attention, and to the Interrogative Model of Inquiry (IMI), elaborated by
Jaakko Hintikka. For IEL, see, e.g., [1–3]; for IMI, see, e.g., [4–6].

The semantic relation "a set of declarative formulas evokes a question" plays an important role
in IEL. Validity of inferences which lead from declarative premises to questions is defined in IEL
in terms of question evocation. Another semantic concept, labeled erotetic implication, provides an
IEL-based account of validity of inferences which lead from a question and possibly some declarative
premise(s) to a question. For erotetic implication see, e.g., [7], or [3], Chapter 7.

The role performed in IEL by question evocation resembles that played by entailment in a logic
of statements. Thus, question evocation is worth being studied, and, as a matter of fact, it has been
extensively studied (cf., e.g., [1], Chapter 5, and [3], Chapter 6). Given the analogy between question
evocation and entailment, it seems worthwhile to build axiomatic systems whose theorems describe
what questions are evoked by what sets of declarative formulas.

1.1. Question Evocation

Speaking in very general terms, a set of declarative sentences X evokes a question Q if, and only
if the hypothetical truth of all the sentences in X warrants that at least one principal possible answer
(PPA) to Q is true but does not warrant the truth of any particular PPA to Q. An example may be of
help. Consider:

Andrew gave a talk. If so, he talked either about philosophy or about formal logic. (1)

Did Andrew talk about philosophy, or did he talk about formal logic? (2)

If (1) consists of truths, at least one of the PPAs to (2):

Andrew talked about philosophy. (3)

Andrew talked about formal logic. (4)
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must be true, but it remains undecided which one of them is true.
Question evocation is definable in terms of multiple-conclusion entailment (mc-entailment);

as a matter of fact, the notion of mc-entailment is one of the main conceptual tools of IEL.
Mc-entailment is a relation between sets of declarative well-formed formulas, where non-singleton
sets are allowed to enter the range of the relation. By and large, a set X mc-entails a set Y just in
case the hypothetical truth of all the elements of X warrants the existence of at least one truth in Y.
The standard concept of entailment can now be defined as a special case, namely as mc-entailment of
a singleton set. Having both concepts of entailment at hand, one can distinguish proper mc-entailment:
a set X properly mc-entails a non-empty set Y if, and only if X mc-entails Y, but no single formula in
Y is entailed by X (cf. [8]). Question evocation can then be defined in terms of proper mc-entailment:
a set of declarative well-formed formulas X evokes a question Q if, and only if the set X properly
mc-entails the set of PPAs to Q.

There are some affinities between inferences that lead to evoked questions and Hintikka’s
precondition for asking questions, according to which a question can only be asked if its
presupposition has been established. Hintikka, however, views question asking as non-inferential
moves of interrogative games. He neither assumes nor denies that a legitimately asked question has
no PPA that is entailed by what has been established earlier. More importantly, the transition from
Hintikka’s precondition to: “the set of PPAs to a question is mc-entailed” relies on some additional
assumptions which, however, need not always hold (for an analysis, see [2], pp. 19–20). Note that IEL
and IMI differ conceptually in many respects. Their approaches to answerhood diverge (cf. [9]), and
the second basic concept of IEL, namely erotetic implication, has no direct counterpart in IMI. Both
theories provide different, yet somehow complementary, models of problem-solving (cf. [10,11]).
Let us add that the concept of question evocation is also closely connected with the concept of
inquisitiveness elaborated within the basic system of Inquisitive Semantics (cf. [12] for a comparison
and details).

1.2. The Aim

In this paper, we present an axiomatic system whose theorems describe question evocation.
We coin the system PMCE. The system is a variation over the recently developed axiomatic system
PMC for proper mc-entailment in Classical Propositional Logic, presented in [8]. As for PMC, one
operates with sequents which have finite sets of declarative well-formed formulas on both sides
of the turnstile. Some theorists identify questions with sets of statements; the relevant statements
are intuitively construed as PPAs. However, a radical reductionism of this kind leads to serious
difficulties (cf. [13,14]). When questions are reduced to sets of PPAs, PMC in its current form
constitutes an axiomatic system for question evocation. However, once a non-reductionistic approach
to questions is accepted, in order to get an axiomatic system for question evocation, one has to
modify PMC. We have to operate with erotetic sequents which have questions as the succedents.
A reformulation of axioms and rules of PMC is required, and at least one primitive structural rule
is needed.

No axiomatic system for question evocation operating with erotetic sequents has been known so
far, though the need for such system(s) was announced long ago (cf. [2]).

1.3. A Historical Digression: The Logic of Questions and the Lvov–Warsaw School

Although the logic of questions did not stay in the center of attention of the Lvov–Warsaw
School, a prominent representative of the School, Kazimierz Ajdukiewicz (1890–1963), made an
important contribution to the field. His 1926 note [15] puts forward an idea which is now widely
accepted but was a pioneering one at the time of publication. Ajdukiewicz modeled interrogative
sentences as sentential functions closed by interrogative operators. A sentential function is a formula
with one or more free variables; semantically, it expresses a condition which may be satisfied by
some objects and not satisfied by others. On Ajdukiewicz’s account, an interrogative operator
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delimits the semantic range of a free variable that occurs in the corresponding sentential function.
For example, ‘who x’ delimits the range to the set of persons, ‘where x’ to the set of places, and so
forth. Interestingly enough, polar interrogatives are analyzed by Ajdukiewicz in a similar manner.
A polar interrogative falls under the schema [?ζ]ζφ, where φ is a sentence and ζ is a variable which
ranges over the set of one-argument truth-functional operators.

In the late fifties and early sixties of the 20th century, the conceptual apparatus of modern formal
logic began to be extensively applied in the area of questions and questioning. A Polish logician,
Tadeusz Kubiński (1923–1991), played an important and influential role in the movement. As David
Harrah puts it:

[. . . ] Kubiński made significant contributions in many areas, on various aspects of erotetic
logic. He studied several varieties of question operators, definability and reducibility of
operators, various types of answers, implication and equivalence between questions, and
the determining and generating of questions. ([16], p. 23)

As for the logical structure of interrogatives, Kubiński shared Ajdukiewicz’s view but refined
and enriched it considerably. He also put forward an interesting idea of a ‘system of the logic
of questions.’ Theorems of some such systems are supposed to describe binary relations between
questions. As for syntax, one operates with formulas of the form QRQ∗, where Q and Q∗ are
(previously defined) questions of a formal language, and R refers to a semantic relation between
Q and Q∗, such as, for example, equivalence, containment, equipollence, being weaker than, being
stronger than, and so forth. Kubiński also considers systems whose theorems characterize which
sentences are possible answers (of different kinds) to the questions analyzed. For space reasons,
we will not go into details here; some systems developed by Kubiński himself are presented in his
monographs [17,18]. Let us only note that Kubiński’s systems are not axiomatic. They are, however,
deductive systems in the sense of being closed (as Kubiński shows) under some consequence operations.

IEL focuses its attention on inferential semantic relations between questions and declaratives
and/or questions. However, there are obvious affinities between the system PMCE presented below
and Kubiński’s general idea of a system of the logic of questions. Theorems of PMCE are erotetic
sequents, that is, are of the form X ` Q, where X is a finite set of declarative well-formed formulas
and Q is a question. Intuitively, a theorem of the form X ` Q states that a question Q is evoked
by a set of declarative well-formed formulas X. Unlike Kubiński’s systems, however, PMCE is an
axiomatic system: some erotetic sequents perform the role of axioms, and rules for deriving erotetic
sequents from erotetic sequents are provided.

2. Logical Preliminaries: Syntax and Semantics

2.1. Syntax

We remain at the propositional level only, and we consider the case of Classical Propositional
Logic (CPL).

2.1.1. CPL-wffs

Let L be the language of CPL. We assume that the vocabulary of L comprises a countably
infinite set Var of propositional variables, the connectives: ¬,∨,∧,→,↔, and brackets. The set Form
of CPL-wffs is the smallest set that includes Var and satisfies the following conditions: (1) if A ∈ Form,
then ‘¬A’ ∈ Form; (2) if A, B ∈ Form, then ‘(A ⊗ B)’ ∈ Form, where ⊗ is any of the connectives:
∨,∧,→,↔. We adopt the usual conventions concerning omitting brackets. We use A, B, C, D, with
subscripts when needed, as metalanguage variables for CPL-wffs, and X, Y, W, Z as metalanguage
variables for sets of CPL-wffs. p, q, r are exemplary elements of Var.
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2.1.2. Questions

We enrich the vocabulary of L with the following signs: ?, }, {, and the comma. A question is an
expression of the form:

?{A1, . . . , An} (5)

where n > 1, and A1, . . . , An are pairwise syntactically distinct CPL-wffs. An expression of the
form (5) satisfying the above conditions reads:

Is it the case that A1, or . . . , or is it the case that An? (6)

Note that a question is not a CPL-wff. However, a question is an expression of an object-level language
(namely, the language L enriched with the above-mentioned signs).

We use Q, Q∗, . . . as metalanguage variables for questions.
We define:

d?{A1, . . . , An} =d f {A1, . . . , An}. (7)

When ?{A1, . . . , An} is a question, d?{A1, . . . , An} (i.e., {A1, . . . , An}) constitutes the set of principal
possible answers (PPAs) to the question. As in IEL, the PPAs will be also called direct answers.

Observe that we allow for a situation in which dQ = dQ∗, but Q 6= Q∗. For example,
d?{p,¬p} = d?{¬p, p}, but ?{p,¬p} and ?{¬p, p} are distinct questions.

A comment. Questions are formalized in different manners. No commonly accepted logical
theory of questions has been developed so far (for overviews see, e.g., [13,19,20]). In this paper,
we follow the semi-reductionistic approach to questions of formal languages. On this account,
questions constitute a separate category of well-formed formulas and are constructed according to
the following schema:

?Θ (8)

where Θ is an expression of an object-level formal language such that Θ is equiform with the expression
of the metalanguage which, in turn, designates the set of PPAs to the question. A question Q of the
form (8) of a formal language represents a natural-language question Q∗ construed in such a way
that possible just-sufficient answers to Q∗ are formalized by PPAs to Q. Remark that “just-sufficient”
means here: “satisfying the request of the question by providing neither less nor more information
than is requested.” For details, developments and a discussion on the semi-reductionistic approach,
see [1], Chapter 3, and [3], Chapter 2.

2.1.3. Erotetic Sequents

From now on, we assume that an erotetic sequent (e-sequent for short) falls under the schema:

X ` ?{A1, . . . , An} (9)

where X is a finite (possibly empty) set of CPL-wffs and ?{A1, . . . , An} is a question, that is, n > 1
and A1, . . . , An are pairwise syntactically distinct CPL-wffs.

Some conventions. As for e-sequents, we characterize the finite sets of CPL-wffs that occur left of the
turnstile by listing the elements of these sets. When X = ∅, we write ` ?{A1, . . . , An}. As usual, we
write X, A for X ∪ {A}.

The inscription “A ∈ CPL” means: “A is a thesis of CPL,” i.e., is provable in CPL. The set of
theses of CPL comprises classical propositional tautologies.

A literal is a propositional variable or the negation of a propositional variable. We say that two
literals are complementary if one of them is the negation of the other. A clause is a literal or a disjunction
of literals.
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2.2. Semantics

Let 1 stand for truth and 0 for falsity. A CPL-valuation is a function v : Form 7→ {1, 0} satisfying
the following conditions: (a) v(¬A) = 1 iff v(A) = 0; (b) v(A ∨ B) = 1 iff v(A) = 1 or v(B) = 1;
(c) v(A ∧ B) = 1 iff v(A) = 1 and v(B) = 1; (d) v(A → B) = 1 iff v(A) = 0 or v(B) = 1;
(e) v(A↔ B) = 1 iff v(A) = v(B). Needless to say, there are (uncountably) many CPL-valuations.

For brevity, in what follows, we omit references to CPL. Unless otherwise stated, the semantic
entailment relations defined below are supposed to hold between sets of CPL-wffs, or sets of CPL-wffs
and single CPL-wffs, and by valuations we mean CPL-valuations.

We define:

Definition 1 (Entailment). X |= A iff for each valuation v:

• if v(B) = 1 for every B ∈ X, then v(A) = 1.

Definition 2 (Mc-entailment). X ‖= Y iff for each valuation v:

• if v(B) = 1 for every B ∈ X, then v(A) = 1 for at least one A ∈ Y.

Definition 3 (Proper mc-entailment). Let Y 6= ∅. X ‖C Y iff X ‖= Y and X 6|= A for every A ∈ Y.

Definition 4 (Question evocation). E(X, Q) iff X ‖C dQ.

In the (particular) case of CPL, we have:

Corollary 5. E(X, Q) iff

1. X |= ∨
dQ and

2. X 6|= A for each A ∈ dQ.

3. Axioms and Primitive Rules of PMCE

Axioms of PMCE are e-sequents falling under the schema:

` ?{D1, . . . , Dn} (10)

where each Di (1 ≤ i ≤ n) is a clause that does not involve complementary literals and D1 ∨ . . . ∨ Dn

involves complementary literals.
Since an axiom is an e-sequent, n > 1 and the clauses D1, . . . , Dn are supposed to be pairwise

syntactically distinct.
Here are examples of axioms of PMCE:

` ?{p,¬p}, (11)

` ?{¬p, p}, (12)

` ?{p ∨ ¬q, q ∨ ¬p}, (13)

` ?{q ∨ r ∨ ¬p, p ∨ r ∨ ¬q}. (14)

The (primitive) rules of PMCE are:

R1:
X ` ?{A1,...,An,B} X ` ?{A1,...,An,C}

X ` ?{A1,...,An,B∧C} provided that (B ∧ C) 6= Ai for i = 1, . . . , n.

R2:
X ` ?{A1,...,An,B}
X ` ?{A1,...,An,C} where (B↔ C) ∈ CPL, provided that C 6= Ai for i = 1, . . . , n.
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R3:
X ` ?{B→A1,...,B→An}

X,B ` ?{A1,...,An}

R4:
X ` ?{A1,...,An}
X ` ?{B1,...,Bn} where d?{A1, . . . , An} = d?{B1, . . . , Bn}.

The provisos in rules R1 and R2 secure that the corresponding rules produce e-sequents (recall
that direct answers to a question are supposed to be pairwise syntactically distinct). Rule R4 is not
superfluous. Recall that the semi-reductionistic approach to questions allows for the existence of
distinct questions that have equal sets of PPAs. Rule R4 enables a transition from a question to a
syntactically distinct question, which, however, has the same set of PPAs.

A proof of an e-sequent X ` Q in PMCE is a finite labeled tree regulated by the rules of PMCE,
where the leaves are labeled with axioms and the e-sequent X ` Q labels the root. An e-sequent is
provable in PMCE iff it has at least one proof in PMCE.

Here are examples of proofs:

Example 1. p ∨ ¬p ` ?{p,¬p}

` ?{p,¬p} (Ax)
` ?{p, p ∨ ¬p→ ¬p} (R2)

` ?{p ∨ ¬p→ ¬p, p} (R4)

` ?{p ∨ ¬p→ ¬p, p ∨ ¬p→ p} (R2)

p ∨ ¬p ` ?{¬p, p} (R3)

p ∨ ¬p ` ?{p,¬p} (R4)

Example 2. p ∨ q ` ?{p, q}

` ?{¬q ∨ p,¬p ∨ q} (Ax)
` ?{¬q ∨ p, p ∨ q→ q} (R2)

` ?{p ∨ q→ q,¬q ∨ p} (R4)

` ?{p ∨ q→ q, p ∨ q→ p} (R2)

p ∨ q ` ?{q, p} (R3)

p ∨ q ` ?{p, q} (R4)

Example 3. p→ q ∨ r, p ` ?{q, r}

` ?{¬r ∨ ¬p ∨ q,¬q ∨ ¬p ∨ r} (Ax)
` ?{¬r ∨ ¬p ∨ q, (p→ q ∨ r)→ (p→ r)} (R2)

` ?{(p→ q ∨ r)→ (p→ r),¬r ∨ ¬p ∨ q)} (R4)

` ?{(p→ q ∨ r)→ (p→ r), (p→ q ∨ r)→ (p→ q)} (R2)

` ?{(p→ q ∨ r)→ (p→ q), (p→ q ∨ r)→ (p→ r)} (R4)

p→ q ∨ r ` ?{p→ q, p→ r} (R3)

p→ q ∨ r, p ` ?{q, r} (R3)

Example 4. p ∧ q→ r,¬r ` ?{¬p,¬q}

` ?{q ∨ r ∨ ¬p, p ∨ r ∨ ¬q} (Ax)
` ?{q ∨ r ∨ ¬p, (p ∧ q→ r)→ (¬r → ¬q)} (R2)

` ?{(p ∧ q→ r)→ (¬r → ¬q), q ∨ r ∨ ¬p} (R4)

` ?{(p ∧ q→ r)→ (¬r → ¬q), (p ∧ q→ r)→ (¬r → ¬p)} (R2)

` ?{(p ∧ q→ r)→ (¬r → ¬p), (p ∧ q→ r)→ (¬r → ¬q)} (R4)

p ∧ q→ r ` ?{¬r → ¬p,¬r → ¬q} (R3)

p ∧ q→ r,¬r ` ?{¬p,¬q} (R3)
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Example 5. ` ?{p, q,¬(p ∨ q)}

` ?{p, q,¬p} (Ax) ` ?{p, q,¬q} (Ax)
` ?{p, q,¬p ∧ ¬q} (R1)

` ?{p, q,¬(p ∨ q)} (R2)

4. Soundness and Completeness of PMCE

4.1. Soundness

The proof of soundness of PMCE is very similar to the proof of Theorem 1 in [8]. The following
are true:

Proposition 6. If ` Q is an axiom of PMCE, then E(∅, Q).

Proof. Let ` ?{D1, . . . , Dn} be an axiom of PMCE. Since each Dj, where 1 ≤ j ≤ n, is a clause
that involves no complementary literals, we have ∅ 6|= Dj for j = 1, . . . , n. However, D1 ∨ . . . ∨ Dn

involves complementary literals and thus ∅ ‖= {D1, . . . , Dn}. Therefore, E(∅, ?{D1, . . . , Dn}).

Proposition 7. The rules of PMCE preserve question evocation from top to bottom.

Proof. We proceed by cases.

(Rule R1). Assume that E(X, ?{A1, . . . , An, B}) and E(X, ?{A1, . . . , An, C}) hold. Hence, X ‖=
{A1, . . . , An, B} and X ‖= {A1, . . . , An, C}. Suppose that X ‖=/ {A1, . . . , An, B ∧ C}.
Therefore, X ‖=/ {A1, . . . , An, B} or X ‖=/ {A1, . . . , An, C}—a contradiction. Thus, X ‖=
{A1, . . . , An, B ∧ C}. Now suppose that X |= B ∧ C. Then, X |= B and X |= C.
Therefore, neither E(X, ?{A1, . . . , An, B}) nor E(X, ?{A1, . . . , An, C}) holds—a contradiction.
Hence, X 6|= B ∧ C. Since E(X, ?{A1, . . . , An, B}) is the case, we have X 6|= Ai for i = 1, . . . , n.
Therefore, E(X, {A1, . . . , An, B ∧ C}) holds.

(Rule R3). Assume that E(X ∪ {B}, ?{A1, . . . , An}) does not hold. Thus, (a) X ∪ {B} ‖=/ {A1, . . . , An}
or (b) X ∪ {B} |= Aj for some 1 ≤ j ≤ n. If (a) is the case, then X ‖=/ {B → A1, . . . , B → An} and
hence E(X, ?{B → A1, . . . , B → An}) does not hold. If (b) is the case, then X |= B → Aj for some
1 ≤ j ≤ n and, again, E(X, ?{B→ A1, . . . , B→ An}) does not hold.

The cases of rules R2 and R4 are obvious.

Thus, we get:

Theorem 8 (Soundness). If the e-sequent X ` Q is provable in PMCE, then E(X, Q).

Proof. By Propositions 6 and 7.

4.2. Completeness

The completeness proof presented below is based on similar ideas as the completeness proof of
PMC given in [8]; the differences stem from the fact that one has to secure that the appropriate trees
are labeled with e-sequents. Moreover, we make use of some properties of question evocation.

We say that an e-sequent with the empty antecedent, ` ?{A1, . . . , An}, is in normal form iff every
A ∈ {A1, . . . , An} is a conjunction of one or more clauses; by the conjunction of one clause we mean
the clause itself. In other words, an e-sequent with the empty antecedent is in the normal form iff
every direct answer to the question that constitutes the succedent is in the conjunctive normal form.
Recall that clauses are, by definition, the simplest cases of CPL-wffs in the conjunctive normal form.
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Observe that the axioms of PMCE are in the normal form.
By the rank of the succedent Q of an e-sequent in the normal form, we mean the number of

occurrences of the conjunction connective, ∧, in the CPL-wffs belonging to the set dQ; the rank of Q
is designated by r(Q).

Lemma 9. Let ` Q be an e-sequent in the normal form. If E(∅, Q), then ` Q is provable in PMCE.

Proof. We proceed by induction on the rank of Q.
1. r(Q) = 0. In this case, each element of dQ is a clause, and a disjunction of all the elements of
dQ is a clause. Assume that E(∅, Q). Thus, no clause in dQ involves complementary literals (since
no clause in dQ is valid) and a disjunction of all the clauses of dQ involves complementary literal(s)
(because it is valid). Hence, ` Q is an axiom of PMCE and thus is provable in PMCE.

2. r(Q) > 0. Assume that E(∅, Q), where r(Q) > 0. Let Q = ?{A1, . . . , An}. Thus, there exists at least
one index i, where 1 ≤ i ≤ n, such that Ai is of the form B1 ∧ . . . ∧ Bm, where m > 1 and B1, . . . , Bm

are clauses. Let j be the least index that fulfills the above condition. Let:

Q∗ = ?{A1, . . . , Aj−1, Aj+1, . . . , An, B1 ∧ . . . ∧ Bm ∧ (pt ∨ ¬pt) ∧ (ps ∨ ¬ps)}, (15)

where pt, ps are propositional variables that do not occur in Q, and pt 6= ps.
Since E(∅, Q), we also have E(∅, Q∗). It follows that:

∅ 6|= B1 ∧ . . . ∧ Bm ∧ (pt ∨ ¬pt) ∧ (ps ∨ ¬ps), (16)

and therefore:
∅ 6|= B1 ∧ . . . ∧ Bm. (17)

Thus, there exists a least index, say, e, where 1 ≤ e ≤ m, such that:

∅ 6|= Be. (18)

Let:
Q∗1 = ?{A1, . . . , Aj−1, Aj+1, . . . , An, Be ∧ (pt ∨ ¬pt)}, (19)

Q∗2 = ?{A1, . . . , Aj−1, Aj+1, . . . , An, B1 ∧ . . . ∧ Be−1 ∧ Be+1 ∧ . . . ∧ Bm ∧ (ps ∨ ¬ps)}. (20)

Since neither pt nor ps occurs in a wff that belongs to dQ, Q∗1 and Q∗2 are questions; recall that direct
answers to a question are supposed to be pairwise syntactically distinct.

Observe that r(Q∗1) < r(Q∗) and r(Q∗2) < r(Q∗). Thus, by the induction hypothesis:

(a) if E(∅, Q∗1), then the e-sequent ` Q∗1 is provable in PMCE,
(b) if E(∅, Q∗2), then the e-sequent ` Q∗2 is provable in PMCE.

Clearly, we have E(∅, Q∗1). Thus, by (a), ` Q∗1 is provable in PMCE.
As for Q∗2 , we have ∅ |= ∨

dQ∗2 .
There are two cases to be considered.

(Case 1.) ∅ 6|= B1 ∧ . . . ∧ Be−1 ∧ Be+1 ∧ . . . ∧ Bm ∧ (ps ∨ ¬ps). Hence, E(∅, Q∗2) and therefore, by (b),
the e-sequent ` Q∗2 is provable in PMCE. Since we have rule R1 and the e-sequent ` Q∗1 is provable as
well, the e-sequent:

` ?{A1, . . . , Aj−1, Aj+1, . . . , An, Be ∧ (pt ∨¬pt)∧ B1 ∧ . . .∧ Be−1 ∧ Be+1 ∧ . . .∧ Bm ∧ (ps ∨¬ps)} (21)

is provable in the calculus. However, we also have rule R2 and hence the e-sequent:

` ?{A1, . . . , Aj−1, Aj+1, . . . , Ak, B1 ∧ . . . ∧ Be−1 ∧ Be ∧ Be+1 ∧ . . . ∧ Bm} (22)
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is provable as well. Recall that Aj = B1 ∧ . . . ∧ Be−1 ∧ Be ∧ Be+1 ∧ . . . ∧ Bm. By applying rule R4 to the
e-sequent (22), we get the e-sequent:

` ?{A1, . . . , An} (23)

that is, the e-sequent ` Q is provable in PMCE.

(Case 2.) ∅ |= B1 ∧ . . . ∧ Be−1 ∧ Be+1 ∧ . . . ∧ Bm ∧ (ps ∨ ¬ps). Therefore, Be ∧ (pt ∨ ¬pt) is
CPL-equivalent to Aj. As the e-sequent ` Q∗1 is provable in PMCE and we have rule R2, it follows
that the e-sequent:

` ?{A1, . . . , Aj−1, Aj+1, . . . , An, Aj} (24)

is provable in the calculus as well. By applying rule R4 to the e-sequent (24), we get the e-sequent (23)
as required.

The following holds:

Proposition 10.
For each question ?{A1, . . . .An} there exists a question ?{C1, . . . , Cn} such that C1, . . . , Cn are in the
conjunctive normal form, (Ai ↔ Ci) ∈ CPL for i = 1, . . . , n, and {C1, . . . , Cn} ∩ {A1, . . . , An} = ∅.

Proof. We define the set {C1, . . . , Cn} as follows:

1. C1 = B ∧ (pj ∨ ¬pj), where B is an arbitrary but fixed CPL-wff in the conjunctive normal form
such that (A1 ↔ B) ∈ CPL, and pj is a propositional variable that does not occur in A1.

2. if i > 1, then Ci = D ∧ (pk ∨ ¬pk), where D is an arbitrary but fixed CPL-wff in the conjunctive
normal form such that (Ai ↔ D) ∈ CPL, and pk is a propositional variable that occurs neither
in C1, . . . , Ci−1 nor in A1, . . . , An.

Clearly, we also have:

Proposition 11. If E(X, ?{A1, . . . , An}) and ?{C1, . . . , Cn} is a question such that C1, . . . , Cn are in the
conjunctive normal form and (Ai ↔ Ci) ∈ CPL for i = 1, . . . , n, then E(X, ?{C1, . . . , Cn}).

Let us now prove:

Lemma 12. If E(∅, Q), then the e-sequent ` Q is provable in PMCE.

Proof. Assume that E(∅, Q). Let Q = ?{A1, . . . , An}. Let ?{C1, . . . , Cn} be an arbitrary but
fixed question that has the properties specified by Proposition 10 w.r.t. Q. By Proposition 11,
E(∅, ?{C1, . . . , Cn}). The e-sequent:

` ?{C1, . . . , Cn} (25)

is in the normal form. Therefore, by Lemma 9, the e-sequent (25) is provable in PMCE. We can extend
a proof of the e-sequent (25) as follows:

` ?{C1, . . . , Cn−1, An} (R2)

` ?{C1, . . . , An, Cn−1} (R4)

` ?{C1, . . . , An, An−1} (R2)

. . .
` ?{An, An−1, . . . , C1} (R4)

` ?{An, An−1, . . . , A1} (R2)

` ?{A1, . . . , An} (R4).

Thus, the e-sequent ` ?{A1, . . . , An}, i.e., ` Q, is provable in PMCE.
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We also need:

Proposition 13. Let X = {B1, . . . , Bm}. E(X, ?{A1, . . . , An}) iff
E(∅, ?{B1 → (B2 → (. . .→ (Bm → A1) . . .)), . . . , B1 → (B2 → (. . .→ (Bm → An) . . .))}).

We are now ready to prove:

Theorem 14 (Completeness). Let X be a finite set of wffs. If E(X, Q), then the e-sequent X ` Q is provable
in PMCE.

Proof. Since we have already proven Lemma 12, it suffices to consider the case in which X 6= ∅.
Let X = {B1, . . . , Bm} and Q = ?{A1, . . . , An}.
Assume that E(X, Q). Thus, by Proposition 13, we have:

E(∅, ?{B1 → (B2 → (. . .→ (Bm → A1) . . .)), . . . , B1 → (B2 → (. . .→ (Bm → An) . . .))})

and, therefore, by Lemma 12, the e-sequent:

` ?{B1 → (B2 → (. . .→ (Bm → A1) . . .)), . . . , (26)

B1 → (B2 → (. . .→ (Bm → An) . . .))}

is provable in PMCE. One can extend a proof of the e-sequent (26) as follows:

B1 ` ?{B2 → (. . .→ (Bm → A1) . . .), . . . , B2 → (. . .→ (Bm → An) . . .)} (R3)

. . .

B1, B2, . . . , Bm−1 ` ?{Bm → A1, . . . , Bm → An} (R3)

B1, . . . , Bm ` ?{A1, . . . , An} (R3)

Hence, the e-sequent X ` Q is provable in PMCE.

5. Derived Rules and Admissible Rules

5.1. Some Derived Rules

Rules R1 and R2 operate on the rightmost direct answers. However, due to the presence of rule R4,
one can always transform a question by putting a direct answer at the rightmost position, act upon
the answer, and then move the resultant wff at the initial position of the answer acted upon. In other
words, the following are derived rules of the calculus PMCE:

R∗2 :
X ` ?{A1,...,Ai−1,Ai,Ai+1,...,An}
X ` ?{A1,...,Ai−1,C,Ai+1,...,An} where (Ai ↔ C) ∈ CPL, 1 ≤ i ≤ n,

provided that C 6= Aj for j = 1, . . . , i− 1 and j = i + 1, . . . , n.

R∗1 :
X ` ?{A1,...,Ai−1,B,Ai+1,...,An} X ` ?{A1,...,Ai−1,C,Ai+1,...,An}

X ` ?{A1,...,Ai−1,B∧C,Ai+1,...,An}

provided that (B ∧ C) /∈ {A1, . . . , Ai−1, Ai+1, . . . , An}.

Due to the presence of rule R4, the following is a derived rule as well:

R∗4 :
X ` ?{A1,...,An}

X ` ?{A1,...,Ai−1,Aj,Ai+1,...,Aj−1,Ai,Aj+1,...,An}
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5.2. Some Admissible Rules

As Theorem 14 shows, the system PMCE is complete w.r.t. question evocation by finite sets of
wffs. Thus, one can make use of some facts concerning question evocation in designing admissible
rules of the system.

For conciseness, we abbreviate:
?{A1, . . . , An} (27)

as
?[A|n] (28)

and
?{A1, . . . , An, B1, . . . , Bj} (29)

as
?[A|n, B1, . . . , Bj] (30)

The following:
?[A|n, B] (31)

abbreviates a question of the form:
?{A1, . . . , An, B} (32)

As for (32), it is assumed that n > 1, and similarly in the remaining cases, also below. An expression
of the form:

?[A|n ⊗ B] (33)

where ⊗ is a binary connective, abbreviates:

?{A1 ⊗ B, . . . , An ⊗ B} (34)

and analogously for:
?[B⊗ A|n] (35)

Let us present some examples of admissible rules of PMCE.

We have:

Fact 15. Let n > 1. If E(X, ?[A|n, B]) and E(X, ?[A|n,¬B]), then E(X, ?[A|n]).

The corresponding admissible rule is:

Rcutr :
X `?[A|n,B] X `?[A|n,¬B]

X `?[A|n]

Fact 16. If E(X ∪ {B}, ?[A|n]) and E(X ∪ {¬B}, ?[A|n]), then E(X ` ?[A|n]).

Thus, we get:

Rcutl :
X,B `?[A|n] X,¬B `?[A|n]

X `?[A|n]

Fact 17. If E(X ∪ {B}, ?[A|n]) and (B↔ C) ∈ CPL, then E(X ∪ {C}, ?[A|n]).

Hence, the following rule is admissible:



Axioms 2016, 5, 14 12 of 14

Rleqv:
X,B `?[A|n]
X,C `?[A|n]

where (B↔ C) ∈ CPL.

Fact 18. If E(X ∪ {B}, ?[A|n]), then E(X, ?[B→ A|n]).

Therefore, we have an admissible rule which is, in a sense, a “converse” of rule R3:

R3r:
X,B `?[A|n]

X `?[B→A|n]

Fact 19. If E(X, ?[A|n → B]), then E(X ∪ {¬B}, ?[¬A|n]).

Therefore, we get:

R¬→r :
X `?[A|n→B]

X,¬B,`?[¬A|n]

Following Smullyan [21], we introduce the concepts of α- and β-wffs (cf. Table 1). However, we
do not consider double negated formulas as α-wffs.

Table 1. α/β wffs.

α α1 α2 β β1 β2

A ∧ B A B ¬(A ∧ B) ¬A ¬B
¬(A ∨ B) ¬A ¬B A ∨ B A B
¬(A→ B) A ¬B A→ B ¬A B

α- and β-wffs are CPL-wffs. Table 1 assigns to an α-wff two CPL-wffs, α1 and α2, such that the
α-wff is true (under a CPL-valuation) if α1 and α2 are true (under the valuation). Moreover, Table 1
assigns to a β-wff two wffs, β1 and β2, such that the β-wff is true (under a CPL-valuation) if β1 or β2

is true (under the valuation).
One can easily extract the corresponding admissible rules from Table 1 and the following:

Fact 20. If E(X ∪ {β1}, ?[A|n]) and E(X ∪ {β2}, ?[A|n]), then E(X ∪ {β}, ?[A|n]).

Fact 21. If E(X ∪ {α1, α2}, ?[A|n]), then E(X ∪ {α}, ?[A|n]).

Fact 22. If E(X ∪ {α}, ?[A|n]), then E(X ∪ {α1, α2}, ?[A|n]).

Fact 23.

If E(X, ?[A|n, β]), β1 6= β2, and Ai 6= β j, where j = 1, 2 and i = 1, . . . , n, then E(X, ?[A|n, β1, β2]).

Fact 24.

If E(X, ?[A|n, α1]) as well as E(X, ?[A|n, α2]), and Ai 6= α for i = 1, . . . , n, then E(X, ?[A|n, α]).

Fact 25. If E(X ∪ {B}, ?[A|n]) and ¬B 6= Ai for i = 1, . . . , n, then E(X, ?[A|n,¬B]).

Let us also note that we have E(X, ?{A, β1, β2}) if E(X, ?{A, β}) holds, and β1, β2, A are pairwise
syntactically distinct. Moreover, we have E(X, ?{A, α}) if E(X, ?{A, α1}) and E(X, ?{A, α2}) hold,
and A 6= α.
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6. Conclusions

IEL considers not only inferences with declarative premises and interrogative conclusions, but
also inferences with interrogative premises and conclusions. Validity of such inferences is defined
in IEL in terms of erotetic implication, being a ternary relation between a question, a (possibly empty)
set of declarative formulas, and a question. However, no axiomatic system whose theorems describe
erotetic implication is known so far. Developing such system(s) constitutes an interesting challenge.

We have remained here at the propositional level. One can argue that most (if not all) of
propositional questions analyzed in the literature can be paraphrased by expressions falling under
the schema (6) and thus formalized, at the CPL-level, by expressions of the form (5). This sheds some
light on the importance of the completeness result for PMCE (i.e., Theorem 14). A natural step further
would be to consider the first-order case. This would require an incorporation of the so-called
constituent questions (which-, what-, where-, when-questions, and so forth). However, providing a
formal representation of some of them, in particular multiple wh-questions (e.g., “Who knows where
Mary bought what?”), is not an easy task. Constituent questions are formalized differently in different
theories. Moreover, it is doubtful if there exists an unique paraphrase pattern for all these questions.
This suggests that in the first-order case one might hope only for a variety of axiomatic systems for
question evocation or erotetic implication, with completeness results (if any) of a value restricted to
the class of constituent questions just considered.

The last remark is this. Although IEL gave rise to the so-called method of Socratic proofs
and some logical calculi (for Classical Logic as well as non-classical logics) which are useful in
proof-search (see e.g., [22–25]), the system PMCE, pertaining to one of the central notions of IEL,
is barely useful in this respect. This is due to the presence of rule R2. It is still an open problem how
one can develop systems for question evocation that facilitate proof-search.
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1. Wiśniewski, A. The Posing of Questions: Logical Foundations of Erotetic Inferences; Kluwer: Dordrecht,
The Netherlands, 1995.
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7. Wiśniewski, A. Erotetic implications. J. Philos. Log. 1994, 23, 174–195.
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24. Leszczyńska-Jasion, D.; Urbański, M.; Wiśniewski, A. Socratic trees. Stud. Log. 2013, 101, 959–986.
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