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A NOTE ON DIAGONALIZATION

Abstract

We present a diagonal method of constructing a denumerable family of infinite

recursive subsets of a recursive set all of which are different from elements of an

effectively given family of infinite r.e. subsets of this set. The construction in

question leads to some incompleteness results, e.g. in problem solving systems.

0. Let us consider a structure of the form (Φ,Ψ, f), where Φ and Ψ are
infinite subsets of N (= the set of natural numbers), Φ is a recursive set,
Ψ is an r.e. (recursively enumerable) set, and f : Ψ ×N → Φ is a partial
recursive function. Let:

rngn(f) = {y : y = f(n, x) for some x ∈ N}.

Observe that rngn(f) equals the range of a function fn defined as follows:

fn(x) = f(n, x),

where n ∈ Ψ. Since f is a partial recursive function, each fn is a partial
recursive function. The range of f as well as the range of any function fn
defined above are r.e. subsets of Φ.

We impose the following condition on the function f :

(†) rngn(f) is a (countably) infinite set, for all n ∈ Ψ.

Condition (†) is equivalent with the following:

(‡) for each n ∈ Ψ, the range of fn is a (countably) infinite set.



124 Andrzej Wísniewski and Jerzy Pogonowski

Our aim can now be described as follows. We assume that the condition
(†) holds. Then we present a method of constructing an infinite family of
total strictly increasing recursive functions whose ranges are different from
the ranges of any of the recursive functions fn already given, but are still
subsets (as a matter of fact, infinite recursive subsets!) of the initial set
Φ. In this way we construct an infinite family of ,,new” infinite recursive
subsets of Φ, that is, infinite recursive subsets of Φ which are different from
any set of the form rngn(f), for all n ∈ Ψ.

We dare to think that the non-standard diagonalization method we
apply in our proof is worth some attention.

The range of a function ϕ will be designated by rng(ϕ). By ϕ[Y ] we
designate the image of a set Y under a function ϕ.

1. First, we shall consider the most demanding case: both Φ and Ψ are
proper subsets of N . We reason as follows.

By assumption, Ψ is an infinite r.e. subset of N . Hence there exists a
recursive bijection k : N → Ψ. Moreover, the domain of f is Ψ×N . Thus
the function g defined by:

g(m,x) = f(k(m), x)

is a total recursive function.

For each m ∈ N , we define:

gm(x) = g(m,x).

By assumption, Φ is an infinite recursive set. So there exists a recursive
bijection h : N → Φ such that h is a total strictly increasing recursive
function. Now we define a partial recursive function h∗ : Φ → N , the
converse of h, by the conditions:

h∗(x) = the unique y such that h(y) = x, if x ∈ Φ,

h∗(x) is undefined otherwise.

Note that h∗ is strictly increasing.

Observe that h∗(g(m,x)) is defined for any m,x ∈ N , since rng(g) ⊆ Φ,
and g is total. We define a recursive predicate R by putting:

∀y∀x∀m (R(y,m, x) ≡ (y < h∗(g(m,x)))).
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Due to the condition (†) assumed above, for any y,m ∈ N there exists
x ∈ N such that R(y,m, x). Since, by (†), the set of values of fn is infinite
for any n ∈ Ψ, so is the set of values of gm for any m ∈ N as well as its
image by h∗. Thus the minimum used in the following definition of the
function r:

r(y,m) = µx (R(y,m, x))

is effective and therefore r is a total recursive function.

At the consecutive step we choose an arbitrary but fixed natural number
j > 0 and we define the function tj as follows:

tj(0) = h∗(g(0, 0)) + j

tj(i+ 1) = h∗(g(i+ 1, r(tj(i), i+ 1))) + j.

Note that the second clause amounts to:

tj(i+ 1) = h∗(g(i+ 1, µx(tj(i) < h∗(g(i+ 1, x))))) + j.

Thus, generally speaking, in order to calculate tj(i + 1) we first calculate
the smallest element, say, a, of rng(gi+1) such that h∗(gi+1(a)) is greater
than tj(i), and second, we add j to the value of h∗(gi+1(a)). Observe that
the number h∗(gi+1(a)) lies between tj(i) and tj(i + 1). This constitutes
the core of our diagonal construction. The existence of the appropriate
number a is warranted by the assumption (†) and by the definition of g.

A value of tj need not belong to Φ. As we will see, however, this does
not make any harm.

Since tj is defined in terms of recursive functions and operations which
lead from recursive functions to recursive functions, tj is a recursive func-
tion. Note that tj is a total recursive function (recall that h∗(g(m,x)) is
defined for any m,x ∈ N). Observe also that tj is a strictly increasing
recursive function, for the construction gives:

(♥) tj(x) > tj(y) if x > y.

Thus the range of tj , rng(tj), is an infinite recursive set.

We will show that rng(tj) 6= h∗[rng(gm)] for any m ∈ N . Let m = 0.
Now tj(0) = h∗(g(0, 0))+j. Clearly g(0, 0) ∈ rng(g0). Therefore h∗(g(0, 0)) ∈
h∗[rng(g0)]. On the other hand, h∗(g(0, 0)) < tj(0), and thus, by (♥),
h∗(g(0, 0)) < y for any y ∈ rng(tj). Therefore h∗(g(0, 0)) /∈ rng(tj) and
hence rng(tj) 6= h∗[rng(g0)].
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Let m > 0. Thus there exists i > 0 such that m = i + 1. Recall that
tj(i+ 1) = b+ j, where:

b = h∗(g(i+ 1, r(tj(i), i+ 1))) = h∗(g(i+ 1, µx (tj(i) < h∗(g(i+ 1, x))))).

Clearly b ∈ h∗[rng(gi+1)]. It is easily seen, however, that b is not tj(i+ 1).
Moreover, b > tj(i), and thus, by (♥), b is not tj(l) for l = 1, . . . , i. On the
other hand, b < tj(i + 1) and hence, by (♥) again, b is not tj(e) for any
e > i+ 1. Therefore b /∈ rng(tj). Hence rng(tj) 6= h∗[rng(gi+1)].

Thus for all m ∈ N , rng(tj) 6= h∗[rng(gm)].

Finally, let us define the following function wj : N → Φ

wj(x) = h(tj(x)).

Since wj is the superposition of h and tj , and these are recursive functions,
wj is a recursive function as well. Since both h and tj are strictly increasing
recursive functions, wj is a strictly increasing recursive function. It is easily
seen that wj is total. Moreover, since h is a bijection from N to Φ, the
range of wj , i.e. rng(wj), is a subset of Φ. Thus, by the properties of wj ,
the range of wj is an infinite recursive subset of Φ.

Now we will show that rng(wj) 6= rng(gm) for any m ∈ N .

We have already proved that rng(tj) 6= h∗[rng(gm)]. But rng(wj) =
h[rng(tj)] and h[h∗[rng(gm)]] = rng(gm), for h∗ is the converse of h. There-
fore rng(wj) 6= rng(gm) for any m ∈ N , as required.

Recall that g is defined by: g(m,x) = f(k(m), x), where k is a recur-
sive bijection from N to Ψ. Thus we have {X : X = rng(gm) for some
m ∈ N} = {X : X = rng(fn) for some n ∈ Ψ}.

Therefore we get:

(♣) rng(wj) 6= rng(fn), for any n ∈ Ψ.

Since the following holds: {X ⊆ Φ : X = rng(fn) for some n ∈ Ψ} =
{X ⊆ Φ : X = rngn(f) for some n ∈ Ψ}, we also have

(♠) rng(wj) 6= rngn(f), for any n ∈ Ψ.

Now recall that j has been an arbitrary natural number greater than
0. So we can say that the family of functions (wj)j∈N−{0} is denumerable.
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On the other hand, it is clear that the exact value of j plays no role in
showing that the condition (♠) holds. Therefore the family (wj)j∈N−{0}
is an infinite family of total strictly increasing recursive functions whose
ranges are different from the range of any of the recursive function fn, but
are still subsets of the initial recursive set Φ.

Finally, consider w,w′ ∈ (wj)j∈N−{0} such that w 6= w′. There are two
possibilities: either w(0) < w′(0) or w′(0) < w(0). Since both w and w′

are strictly increasing, it follows that in each case the sets of values of w
and w′ are different. In other words, for any w,w′ ∈ (wj)j∈N−{0} we have
rng(w) 6= rng(w′) if w 6= w′.

Thus we have constructed an infinite family of recursive subsets of Φ
which are different from the ranges of the already given recursive functions
fn.

2. So far we have considered the most demanding case. Observe, however,
that when Φ = N , the required construction simplifies a lot, since we need
neither h nor h∗. Now wj can be defined immediately by the conditions:

wj(0) = g(0, 0) + j

wj(i+ 1) = g(i+ 1, µx (wj(i) < (g(i+ 1, x)))) + j.

When Ψ = N , we do not need g (that is, g coincides with f in such a
case).

3. Anyway, we have just proved the following:

Theorem.

Let A = (Φ,Ψ, f) be such that: Φ is an infinite recursive set, Ψ is an
infinite r.e. set, and f : Ψ×N → Φ is a partial recursive function. Let:

rngn(f) = {y : y = f(n, x) for some x ∈ N}

ΣA = {X ⊆ Φ : X = rngn(f) for some n ∈ Ψ}.

If each element of the family ΣA is an infinite set, then there exists an
infinite family of infinite recursive subsets of Φ which are different from
any of the sets in ΣA.

For any X ⊆ N let ∆X be the family of all infinite recursive subsets of
X. We say that A = (Φ,Ψ, f) is recursively complete, if ∆Φ ⊆ ΣA.
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The theorem proved above shows that no structure A = (Φ,Ψ, f) sat-
isfying the assumptions of the theorem is recursively complete.

4. A few words comparing the above procedure with commonly known
results are in order. Most frequently, incompleteness results are obtained
with the help of some form of the Diagonal Lemma (cf. e.g. Hinman’s
monograph [2], 320). For any R ⊆ A×A and any a ∈ A let:

Ra = {b ∈ A : R(a, b)}.

Define the R-diagonal of A to be:

DR = {a ∈ A : R(a, a)}.

Then the Diagonal Lemma says that for any R ⊆ A×A the set A−DR is
not equal to any Ra, for a ∈ A.

Call the sets Ra the R-sections, a being an R-index for Ra. Call R
universal for the family C ⊆ ℘(A), if each element of C is an R-section.
Then we have e.g. the following well known applications of the Diagonal
Lemma:

• For any set A there is no surjective mapping F : A→ ℘(A). Let RF =
{(a, b) : b ∈ F (a)}. Then the range of F equals exactly the family
of all RF -sections. By the Diagonal Lemma, the complement of the
RF -diagonal set is not an RF -section and hence F is not surjective.

• For any theory T in the language of Peano Arithmetic PA let {ϕa :
a ∈ N} be the list of all formulas of T and let m be the numeral
corresponding to the natural number m. Then the relation RT =
{(a,m) : ϕa(m) ∈ T} is universal for the family of all weakly T -
representable sets (observe that each RT -section RT

a is a set weakly
T -representable by ϕa). As a consequence of the Diagonal Lemma
we get that the complement of the diagonal set {m : ϕm(m) ∈ T},
i.e. the set {m : ¬ϕm(m) ∈ T} is not weakly T -representable. This
leads to the conclusion that if T is a consistent theory including PA,
then T is not decidable.

• Similarly, if we put RTh(PA) = {(a,m) : ϕa(m) ∈ Th(PA)}, where
Th(PA) is the set of all sentences that are true in the standard model
of PA, we come to the conclusion that RTh(PA) is universal for the
class of all sets definable over PA which in turn, by Diagonal Lemma,
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implies the undefinability of arithmetical truth: the set Th(PA) is
not definable in PA.

The construction presented above in 1.–3. is not explicitly of this form.
Rather, it is akin to those approaches in which one makes essential use of
some infinity assumptions. For example, consider a result reported by Cori
and Lascar [1], Part II, 59–60. Let F be a two-argument recursive function
and assume that for all x ∈ N the set Ax = {F (x, y) : y ∈ N} is infinite.
Then there exists an infinite recursive set B distinct from all the sets Ax,
for x ∈ N . In order to prove this, we define the function G:

G(0) = 0

G(x+ 1) = (µz ((z)2 = F (x, (z)1) ∧G(x) < (z)2))2 + 1.

Here (z)1 and (z)2 are, correspondingly, the first and the second pro-
jection defined in the usual manner for the Cantor’s pairing function:

〈x, y〉 =
(x+ y)2 + 3x+ y

2
.

The function G is a strictly increasing total recursive function. Let B
be its range. Hence B is an infinite recursive set. Now, B is distinct from
all Ax, because:

• we have G(x) < (µz ((z)2 = F (x, (z)1) ∧G(x) < (z)2))2 < G(x + 1)
and hence (µz ((z)2 = F (x, (z)1)∧G(x) < (z)2))2 does not belong to
B, i.e. the range of G;

• (µz ((z)2 = F (x, (z)1) ∧G(x) < (z)2))2 ∈ Ax for all x ∈ N .

This construction is a special case of the construction presented in this
paper (cf. 2 above).

5. Let us shortly comment about certain possible applications of the con-
struction just presented. First of all, note that the following are immediate
consequences of the theorem.

1. Let A = (Φ,Ψ, f) be such that Φ is an infinite recursive set, Ψ is an
infinite r.e. set, f : Ψ×N → Φ, each element of the family ΣA is an
infinite set, and ∆Φ ⊆ ΣA. Then the function f is not recursive.

2. Let A = (Φ,Ψ, f) be such that Φ is an infinite set of natural numbers,
Ψ is an infinite r.e. set, f : Ψ×N → Φ is a partial recursive function
and ∆Φ ⊆ ΣA. Then the set Φ is not recursive.
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The above consequences, as well as the theorem itself serve as examples
of incompleteness results, it the wide sense of the word. Let us mention
one — out of many possible — interpretation relevant in this respect.

Take a structure of the form (Φ,Ψ, f). Suppose that Φ represents a set
of (suitable numerical codes of) solutions of a problem P . Suppose further
that Ψ is a denumerable r.e. set of (numerical codes of) conditions, N is the
set of indices of possible worlds, and f : Ψ×N → Φ is a partial recursive
function which, intuitively speaking, assigns to a condition and a world the
solution of P which is true in the world and satisfies the condition. We
may say that the set:

Γc = {y ∈ Φ : y = f(c, x) for some x ∈ N}
is the set of solutions of P that are determined by condition c ∈ Ψ.

Assume that Φ is a denumerable set, and that Γc is a countably infinite
set, for all c ∈ Ψ. Now we face the following dilemma:

• Φ is a recursive set. Hence, by the theorem, there exist infinite recur-
sive subsets of Φ (actually, infinitely many of them!) such that these
sets are not determined by any condition specified in the r.e. set Ψ.
In other words: there exist infinite decidable sets of solutions of P
which are subsets of the already given decidable set of solutions, but
are not determined by any of the effectively listed conditions. Note
that we neither assume nor deny that Φ represents the set of all so-
lutions of P ; note also that the above effect is persistent in the sense
that no effective enrichment of Ψ changes the picture.

• Φ has infinite recursive subset(s) and each infinite recursive subset
of Φ is determined by some condition which belongs to Ψ. Then,
according to the theorem, Φ is not a recursive set. In other words:
each infinite decidable set of solutions of P included in an already
given set of solutions S of P is determined by some of the effectively
listed conditions, but the whole set of solutions S is not decidable. As
before, we neither assume nor deny that S is the set of all solutions
of P . However, assuming that this is the case makes the effect really
intriguing.

Some further interpretations of the structures of the form A = (Φ,Ψ, f)
satisfying the effective conditions described at the beginning of the paper
may be obtained in terms of provability relation or in terms of Turing
machines.
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