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KUBINSKI’'S THEORY OF QUESTIONS

0. INTRODUCTION

Tadeusz Kubinski has made an important contribution to the logic of
questions. He was one of the pioneers of applying the methods and techniques
of modern formal logic to the field. In the sixties and early seventies Kubinski
published several very interesting papers devoted to the logic of questions. His
monograph Wstep do logicznej teorii pytan [An Introduction to the Logical
Theory of Questions] was published in 1971 in Warsaw [21]. This book preced-
ed the famous monograph The Logic of Questions and Answers published by
Nuel D. Belnap and Thomas P. Steel in 1976 [3] and even now may be
regarded as an alternative to it: there are some similarities in the general
approach (questions are not reduced to expressions of other kinds, syntactical
tools are extensively used, model-theoretic semantics is applied etc.), but there
are also substantial differences. Unfortunately Kubinski published his book
in Polish; his English monograph based on the Polish book, titled An Qutline
of the Logical Theory of Questions, was published only in 1980 in (East)
Berlin [25].

This paper is devoted to the presentation of two important aspects of the
Kubinski’s contribution to the logic of questions. First, we shall present here
his analysis of the logical form of questions. Second, we will present two
systems of erotetic logic built by him. Let us stress, however, that our aims
are limited: we do not pretend here to the complete exposition of all of Kubin-
ski’s ideas and results in the area of the logic of questions. This paper is only
an introduction. Yet, we hope that it will encourage both logicians and lin-
guists interested in questions to study Kubinski’s papers and monographs in
detail.

There is no room for a comparison of Kubinski’s approach with other
approaches. For a general information and assessment, however, see the review
article [6] and the paper of Harrah included in this volume.
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1. LOGICAL ANALYSIS OF QUESTIONS

In this section we shall present an outline of Kubinski’s analysis of the

logical form of questions. In what follows the expressions “question”, “inter-
rogative sentence” and “interrogative” will be used as synonyms.

1.1. The concept of question. Kubinski’s concept of question of a formaliz-
ed language is purely syntactical: questions are understood as expressions of
a strictly defined shape. The leading idea of the analysis is that each question
consists of an interrogative operator and a sentential function. Interrogative
operators, in turn, consist of both constants and variables. The only free vari-
ables in the sentential functions which occur in questions are the variables of the
corresponding interrogative operators; these variables are “bound” by the in-
terrogative operators. Thus the structure of questions resembles to some extent
the structure of some quantified declarative formulas. Yet, the interrogative
operators are not defined in terms of quantifiers and questions are not reduced
to declarative formulas. Moreover, questions are not reduced to expressions of
other kinds, such as imperatives, epistemic imperatives, alethic modalities etc.

The variables which occur in questions may belong to various syntactical
categories. Roughly, the categories of variables “bound” by interrogative ope-
rators indicate the (ontological) categories of objects which are asked about.
For example, a question whose interrogative operator contains only individual
variables asks about individuals. If the relevant variables run over sentential
connectives, then the corresponding questions are about either the existence of
some state(s) of affairs or some connection(s) between states of affairs. Ques-
tions with predicate variables, in turn, ask about properties or relations. When
a question contains only sentential variables, it 1s a question about logical
values (truth and falsity). Kubinski considers also “mixed” questions, that 1s,
questions whose interrogative operators contain variables belonging to two or
more different categories.

The monograph [21] and its enriched English version [25] provide us
a formal approach to questions of many kinds. Some of the results of these
monographs were announced in the papers of Kubinski published up to 1970 (see
References); yet, these monographs also refine some previous proposals. The papers
of Kubinski published in 1973 contain, in turn, elements of a new, more general
approach. There is no room for the presentation of all the results of these mono-
graphs and papers; we shall restrict ourselves to the analysis of questions with
individual variables and with variables running over sentential connectives. Roughly,
the first may be regarded as formal counterparts of some “which” questions, whereas-
the second are formal counterparts of some propositional questions.

1.2. Basic formal language. Questions analyzed by Kubinski are expres-
sions of various formalized languages. These languages, however, result from
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some basic first-order language by extending its vocabulary with some new
variables and constants. The basic language ¢ is simply the language of the
first-order predicate calculus with identity and individual constants, but with-
out function symbols. The vocabulary of ¥ contains the logical constants
-1 (negation), & (conjunction), v (disjunction), — (implication), = (equival-
ence), V (universal quantifier), 3 (existential quantifier), the identity symbol =,
an infinite list of individual variables x,, x,, ..., an infinite list of individual
constants a,, a,, ..., and, for each positive integer n, an infinite list of n-ary
predicate symbols P}, P, ..., and the technical signs: (, ). Terms and
declarative well-formed formulae (d-wifs for short) of ¥ are defined as usual.

We shall use the letters A, B, C (with subscripts if needed) as metalinguistic
variables for both d-wffs of ¥ and d-wfifs of the extensions of ¥ presented
below. A d-wff with no free variables is said to be a sentence; otherwise a d-wif
is said to be a sentential function. A (metalinguistic) expression of the form
A(x;, ..., x; ) refers to the sentential functions whose free variables are exactly
the (explicitly listed) variables x; , ..., x; .

In order to obtain formal languages which are applicable in the analysis of
the questions we are interested in we have to enrich the language #. We shall
do it in two steps. First, we will extend the language & to a language ¥, in
which we can express the so-called numerical questions; this category includes
most of the “which” questions. Second, we will enrich the language ¥ to
a language ¥, in which some propositional questions can be expressed.

1.3. Simple numerical questions. In order to illustrate the basic idea which
underlies Kubinski’s analysis of simple numerical questions let us take a look
at the following table (k stands here for a positive integer, whereas x is an
individual variable):

Table 1
(L.a) For some x, A(x). (1.b) For which [at least one] x, A(x)?
(1.c) For which [all] x, A(x)?
(2.a) For at least kx, A(x). (2.b) For which [at least k] x, A(x)?
(2.c) Which are all [at least k] x
such that A(x)?
(3.a) For more than kx, A(x). (3.b) For which [more than k] x, A(x)?
(3.c) Which are all [more than k] x
such that A(x)?
(4.a) For exactly kx, A(x). (4.b) For which [exactly k] x, A(x)?

(4.c) Which are all [exactly k] x
such that A(x)?
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The expressions which occur in the right column of the above table re-
present the paraphrases of simple numerical questions; each such question con-
sists of a sentential function A(x) and a simple numerical operator. The left
column shows, however, that there is an analogy between the structure of
simple numerical questions and the structure of some first-order (numerical)
sentences. Yet, each numerical declarative sentence is paired with two simple
numerical questions.

Let us now be more formal. First, let us extend the vocabulary of the
initial language .# in order to obtain the vocabulary of a certain new language
# . The extension goes on by adding the following symbols: an infinite list of
numerals 1, 2, 3, ..., the constants <, <, C, and the technical sign / (slash). The
declarative well-formed formulae (d-wffs) of £, are precisely the d-wifs of the
(initial) language £. The interrogative operators of the language %, (also called
simple numerical operators) are expressions of the following forms:

k < x, (for which [at least k] x;),

k < x, (for which [more than k] x)),
kx; (for which [exactly k] x),
Cx; (for which [all] x,),

k <)x; (which are all [at least k] x, such that),
(k <)x;  (which are all [more than k] x, such that),
(k) x; (which are all [exactly k] x; such that).

where x; is an individual variable and k=1, 2, ....
A simple numerical question is an expression of the form:

(13.0)  O(x)A(x)

where A (x)) is a sentential function with x; as the only free variable and O (x;) 1s
a simple numerical operator containing x, as the only variable.

Let us now consider some examples.

The questions:

(1.3.1)  Which Polish towns, at least four, are larger than Poznan?
(1.3.2)  What are at least four Polish towns that are larger than Poznan?
may be regarded as falling under the scheme:
(3.3 dgx.A(%)

The question:
(1.3.4)  Which Polish towns, more than three, are larger than Poznan?
may be regarded as having the logical form of:
(135 3 adlx)
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The questions:
(1.3.6) Which four Polish towns are larger than Poznan?
{1:3:7) Exactly which four Polish towns are larger than Poznan?
fall under the scheme:
(1.3.8) 4x, A (x).

The questions (1.3.1),(1.3.2),(1.3.4), (1.3.6) and (1.3.7) include some numerical
expressions. On the other hand, questions with such expressions are not frequent
in an ordinary discourse. Yet, many questions of an ordinary discourse have
numerical reference components expressed by the grammar. Let us consider:

(1.3.9) Which Polish town is larger than Poznan?
(1.3.10) Which Polish towns are larger than Poznan?

By and large, the question (1.3.9) calls for exactly one example of a Polish
town, whereas the question (1.3.10) calls for at least two examples of Polish
towns. Thus the formalization of (1.3.9) should be of the form:

(1.3.11)  1x; A(x)),

whereas the formalization of (1.3.10) is either of the form:
(1.3.12) 2<x;A(x)

or of the form:

(1.3.13) 1<% 4(x)

Besides the numerical components, many natural language questions include
also completeness-claim components. Let us consider the following questions:

(1.3.14)  Which are all of the Polish towns larger than Poznan?
(1.3.15)  Which are all of the at least four Polish towns larger than Poznan?
(1.3.16)  Which are all of the more than three Polish towns larger than Poznan?
(1.3.17)  Which are all of the exactly four Polish towns larger than Poznan?
The formalizations of (1.3.14)-(1.3.17) are respectively of the form:
(1.3.18) Cxpd i),
(13.19) (4 <)x Alx),
(1.3.20) (3 <)x; A(x,),
(1.3.21) (4)x; A(x;).
The question:
(1.3.22)  Which is the unique Polish town larger than Poznan?
has, in turn, a formal counterpart of the form:

(1.3.23) (1) x; A(x).

3 — Logka XVII
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Kubinski stresses that some questions which do not express explicitly the
completeness requirement can nevertheless be understood as complete-list que-
stions. So it is also possible to conceive the questions (1.3.2) and (1.3.4) as
falling under the schemata (1.3.19) and (1.3.20), respectively, and the questions
(1.3.6) and (1.3.7) as having the form of (1.3.21). Similarly, the question (1.3.9)
may correspond either to (1.3.11) or to (1.3.23).

Kubinski assigns to each simple numerical question a set of direct answers.
This assignment is made in purely syntactical terms; a direct answer can be
obtained from the question by means of simple syntactical transformations. At
the same time, however, direct answers are “these sentences which everybody
who understands the question ought to be able to recognize as the simplest,
most natural, admissible answer to this question” ([25], p. 12; emphasis added).
Let us designate by 4 (x;/a;) the sentence which results from the sentential
function 4 (x,) by proper substitution of the individual constant a; for the (each
free occurrence of) variable x,. Direct answers to simple numerical questions
can be characterized by means of the following table (in each case considered
belows ay., . lgyinnny 45, ATC assumed to be nonequiform, i.e. syntactically dif-
ferent individual constants; x_ represents a variable which is substitutable for x;
in A(x,) and A(x,) is the result of the substitution):

Table 2

Question Direct answers

k<x:4(x) A(x;/a;) & ... & A(x;/a;), where n >k.

ko (%) A(x;/a;) & ... & A(x;/a;), where n > k.

kx; A(x;) Alx;/a;) & ... & A(x;/a;)

Cx; A(x;) A(x;/a;) & ... & A(x;/a;)

& Vx (Ax)-x,=a,Vv .. VX, =a,).

(k<)x; A(xy) A(x;fa;) & ... & A(x;/a;)

& Vx, (A(x)->x, =a; v ...
Ax;/a;) & ... & A(x;/a;)

& Vx,(A(x,)—>x,=a; Vv ..
Ax;/a;) & ... & A(x;/a;)

& Vx,(A(x)—x,=a; Vv ..

J1

vx, =a;), where n> k.
(k <)x; A(x)
vx, =a;), where n> k.
(k)x; A(x,)

S, ajk).

In extensional semantics different individual constants may refer to the
same object. Yet, Kubinski does not include the appropriate distinctness-claims
(i.e. the formulas saying that different individual constants that occur in a given
direct answer refer to different elements of the domain) into direct answers. The
distinctness-claims, however, are elements of the so-called inequality counter-
parts of direct answers. Their definitions are straightforward.
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In the paper [24] the analysis of simple numerical questions is extended
and questions with the interrogative operators “for which [at most k] XL e

i

which all [at most k] x,”, “for which [at least k, but at most m] x;” and “for
which all [at least k, but at most m]| x,” (where m > k) are entered into the
picture. The analysis of these questions goes on through the lines presented

above; the definitions of direct answers are straightforward.

1.4. Propositional questions. The naturalness of the “interrogative opera-
tor-sentential function” analysis of numerical questions is due to the structural
similarity of these questions and some quantified sentences. The situation 1s
different, however, in the case of most propositional questions: one may argue
that these questions do not contain expressions which may be analyzed as
“binding” any variables. Yet, Kubinski shows that also these questions can be
analyzed within the “interrogative operator-sentential function” framework:
the leading idea of his analysis is that in the case of propositional questions the
appropriate variables are sentential connective variables, that is, variables ran-
ging over some (extensional) sentential connectives. But there is a price: the
language of analysis must be enriched with some extensional connectives which
are seldom used in logical texts (although these connectives are definable in
first-order logic) as well as with some corresponding variables. We shall label
this language by .%,.

The vocabulary of the language ¥, consists of all the symbols of the
(basic) language & plus the following connectives: as, i, k, n, b}, d} . _; (where
i< nji, < ...<i;i <nand the sequence i, ..., i, can be empty). In addition,
the vocabulary of %, contains the variables: «, ¢, 1, ", 0" (where n > 1), and
the square brackets [ ]. The d-wfifs (i.e. declarative well-formed formulae) of
¥, can be defined as follows:

(a) each d-wff of & 1s a d-wff of ¥,;

(b) if A, B are d-wffs of &,, then 714, Vx; 4, 3x;A, (AAB), (Av B),
(A—> B), (A= B), asA, iAB, kAB, nAB, aA, nAB, ¢eAB are d-wffs of .&,;

(¢) it A, ..., 4, are d-wifs of &, then b7 A, ... 4, d}, Ay s A
B® Ay vopmeilyy 0" Ay A, ave d-WHS: of Ly

(d) there are no other d-wifs of .Z,.

The connectives as, k, i, n, b7, d}
following definitions:

De. 1. asd = A.
Dr. 2. kAB= A & B.
Dr. 3. iAB=A4A & 71B.
Dr. 4. nAB = 1 A.
5
6

n

... are understood according to the

Dr. 5. b7 A,, ..., A, = asA,.
Dr. 6. d7 . A,..,A, =B, &...&B

- . where B, (1 < r < n)isequal to
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asA, if r is one of the indices iy, ..., i, ; if 7 is not one of the indices i, ..., i, or
the sequence iy, ..., 1, is empty, then B, is equal to 714,.

The variable « ranges over the set {as, 71}, whereas the variables ¢ and
1 range over the sets {n, i, k} and {i, k}, respectively. A variable of the form "
refers to connectives of the form b7?. A variable 6" ranges over the connectives
of the form df .

Questions of the language %, have the following forms:

(14.1)  [o] oA,
(142) [T P Ay Ass
(143) [6"] 6"A4,, ..., A
(144) [e] 4B,

(1.4.5)  [n] n4B,
where 4, B, 4,, ..., A, are sentences (i.e. d-wifs without free variables) of %,.

n?

We shall use the term propositional questions for the questions of .%.,.
There are no standard readings of the interrogative operators that occur in
propositional questions: these operators may represent various question-
-forming expressions. Yet, using the logical jargon propositional questions can
be read as follows:

Table 3
Question Possible reading
[a] x4 Is it the case that A?
[B"] f"A4,, ..., A, Is it the case that Ay, or is it the case that A,, ..., or is
it the case that A,?
0] 0%y woneqpily Is it the case that A,, and A,, ..., and A7
[¢] eAB Is it the case that A?; if so, is it also the case that B?
[n] nAB It is the case that A; is it also the case that B?

Each propositional question is accompanied with a set of direct answers to
it. Again, direct answers are sentences of %, which can be obtained from the
question by some simple syntactical transformations; at the same time they are
assumed to be the simplest possible answers. The following table characterizes
direct answers to propositional questions:

Table 4
Question Direct answers
[a] oA asA, 1A

(5 B s s BA,,.., A, where i=1,2,.. . n.

n?
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PO P lips vommeldy &) A ey
[e] €AB nAB, kAB, iAB
[n] nAB kAB, iAB

Questions of the form [«] o4 may be regarded as simple yes-no questions
(let us recall that asA is equivalent to A4). Since 7 4,, ..., 4, Is equivalent to
asA, and hence to A4;, questions of the form [f"] f"A4,, ..., A, may be called
disjunctive questions. A sentence of the form &}, ;, A, ..., 4, is equivalent to
the conjunction B, & ... & B,, where B, (1 <r < n) is either of the form asA4, or
of the form 714, (to be more precise, B, is equal to as4, if r is one of the indices
i, ..., i.and equal to 714, otherwise; if the sequence i, ..., i, is empty, then
B, &..&B,is 14, &... & 714,). Thus, roughly, questions having the form
[6"] 6" A, ..., A, ask about the logical value of each of the sentences
A, ..., A,. We shall call them conjunctive questions. Questions of the form [¢]
¢AB and [n] nAB are called conditional questions. The direct answers to a ques-
tion [¢] ¢AB are the sentences nAB, kAB and iAB which, in turn, are equivalent
to the sentences 14, A & B, and A & 1B, respectively; hence Kubinski calls
them conditional questions with revocable antecedents. The direct answers to
questions of the form [n] nAB are the sentences kAB and iAB, which are
equivalent to A & B and 4 & 71B, respectively; thus these questions are called
conditional questions with irrevocable antecedents.

Some examples may clarify matters here. The formal counterpart of the

question:

(1.4.6) Is John handsome?

is of the form [«] a«A. The question:

(1.4.7) Is John handsome or intelligent?

falls under the scheme [B?] B*> 4, B. But the question:

(1.4.8) Is John handsome and intelligent?

has a formal counterpart of the form [6%*] 6% A4, B. The question:
(14.9) If Mary is John’s mother, then is he the son of Peter?

has two possible readings. Under the first reading the question (1.4.9) can be
answered by the sentence “Mary isn’t John’s mother”; thus the formal coun-
terpart of (1.4.9) is of the form [¢] ¢éAB. The second reading does not allow for
answering (1.4.9) with the negation of the “antecedent”; in this case the analyz-
ed question falls under the scheme [7] 7A4B.

The analysis of propositional questions is furthered in [24]. This paper,
however, simplifies and generalizes the concept of propositional question: the
interrogative operators contain sentential connectives instead of sentential con-
nective variables. It is assumed that the language of analysis is a first-order
language which contains all the extensional connectives definable in the
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first-order logic; moreover, it is assumed that some linear ordering in each set
of sentential connectives with the same number of arguments has been establish-
ed. A propositional question is then defined as an expression of the form:

(*) UID""}fn)Al "‘AI(')

where f,, ..., f, are k-argument sentential connectives, f; precedes f;., with
respect to the established linear ordering and A4,, ..., 4, are sentences of the
language of analysis. A direct answer to a question of the form (x) is a sentence
having the form:

(%) fid, .. A,

where [ < n.

1.5. Compound numerical questions. It is not the case that each “which”
question corresponds to some simple numerical question. It often happens that
we ask not about a number of individuals having a certain property, but about
couples, triples etc. of individuals bearing some relation. Moreover, some of
such questions include also a (explicit or implicit) completeness-claim. But the
situation is even more complicated, since many multiple “which” questions
contain some numerical components which pertain to some of their constitu-
ents, but not to the whole question. Furthermore, many multiple “which”
questions are ambiguous. Let us consider the question:

(1.5.1)  Which three boys love which two girls?

The question (1.5.1) may be interpreted as asking about three boys and
two girls such that each of these girls is loved by exactly one of the boys. But it
is also possible to understand (1.5.1) as asking about three boys and two girls
such that each of the boys loves the two girls. Moreover, it is as well possible to
construe (1.5.1) as asking about three boys and some (but at least two and no
more than six) girls such that each of the boys loves two of the girls. Sometimes
(1.5.1) can also be understood as asking about a complete list of boys and girls
fulfilling one of the above conditions.

One may argue that the ambiguity of (1.5.1) is due to the numerical expres-
sions which occur in it. But let us consider the question:

(1.5.2)  Which boys love which girls?

Again, by putting (1.5.2) a questioner may require information about (1)
girl(s) loved by each of the boys, or (2) boys and girls such that each of the girls
is loved by each of the boys. There are also further possible readings of (1.5. 2)

The question (1.5.2) may be regarded is a special case of:

(1.5.3)  Which [at least k] boy(s) love(s) which [at least n] girl(s)?
Similarly, the question (1.5.1) falls under the scheme:

(1.5.4)  Which k boy(s) love(s) which n girl(s)?
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Questions of the form (1.5.3) and (1.5.4) are ambiguous; the same holds
true for most of the multiple “which” questions that contain numerical expres-
sions and for many of them that do not contain such expressions.

Kubinski deals with the problems raised above by defining compound
interrogative operators. These operators consist of strings of the following exp-
ressions: k < (“for which [at least k]”), k < (“for which [more than k]”), k (“for
which [exactly k]”), C (“for which [all]”), (k <) (“which are all [at least k] ...
such that™), (k <) (“which are all [more than k] ... such that”), (k) (which are all
[exactly k] ... such that”), where k = 1, as well as of individual variables, some
additional constants and the technical sign / (slash). The language of analysis of
compound numerical questions is again the language %, (cf. Section 1.3). For
the sake of simplicity we shall restrict ourselves to the preseritation of Kubin-
ski’s analysis of two-argument compound numerical questions.

A two-argument compound numerical question is an expression of #, ha-
ving the following form:

(1.5.5) *0/Ex;x; A(x;, x)),

where 1 =1, 2, 3,i#J, A(x;, X;) is a sentential function of &, with x;, x; as
the only free variables, and both @ and Z may be of one of the following forms:
k<, k<,k C, (k<) (k<) (k), where k =1, 2, ... Thus each two-argument
compound numerical question consists of a two-argument compound interroga-
tive operator *@/E x;x; and a sentential function whose only free variables are
the variables of the corresponding interrogative operator. Since the natural-
-language numerical “which” questions are ambiguous, there are no standard
readings of the two-argument interrogative operators; yet, by defining the set of
direct answers to a given two-argument compound numerical question we can
clarify its meaning. Again, direct answers are defined in syntactic terms, but
they are regarded as the simplest, most natural admissible answers.

In order to go on we need some notational conventions. An expression of
the form:

() 1—[ A;
i=1
is an abbreviation of the conjunction:
(%) A & ... & A,

whereas an expression of the form:
n
(%) Z A,
i=1
is an abbreviation of the disjunction:

(****] Al\/.‘.VA

n-
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Of course if n = 1, then both (%) and (+*#) reduce to 4;. By 4 (x,/a,, x;/a,)
we shall designate the sentence which results from the sentential function
A(x;, x;) by proper substitution of a, for x; and a, for x;, respectively.

Let us now analyze some two-argument compound numerical questions in
detail. A question of the form:

(1.5.6)  'm/nx;x; A(x;, X;)
has as direct answers sentences of the form:

(1.5.7) ﬂ A(xi/a;,,x;/a,) & H A(x,fay, x;/a5) & ...
k=1

k=1
i

& ] Axi/a,,, x;/a,,),

k=1
where each of the following sequences of individual constants: (¢) a;,, ---, @, (el
&, 5 o By, 5 1Ca) g gpenns, By 5 wmy (¢ a,,, .-, a, hasno repetitions and the sequen-

CE(CH) By s ey Ggps Bgys oes Bpgs vovs Byys oees By, has exactly n different terms. Thus,
roughly, a direct answer to a question of the form (1.5.6) specifies m different
values of x; and assigns to each of these values some value(s) of x; in such a way
that the total number of the assigned different values of x; in equal to n. This 1s
exactly the situation mentioned in the case of the first possible reading of the
question (1.5.1). (Of course, different individual constants may designate the same
object, so the description given above is only partly adequate. Yet, we shall
disregard this property of extensional semantics in our comments.)
The direct answers to a question of the form:

(1.5.8)  *m/n x; x; A (x;, x;)

are of the form:

(159 1 11 4&i/a,. x;/a;),
r=1 k=1
where all the individual constants a, , ..., a; are different and all the individual
constants a, , ..., a;, are different. Thus, roughly, a direct answer to a question
of the form (1.5.8) specifies m different values of x; and assigns to each of these
values the same collection of exactly n different values of x;. This corresponds,
among other things, to the second reading of the question (L.5.1).
A question of the form:

(1.5.10)  *m/nx;x; A(x;, X;)
has as direct answers sentences of the form:

(1.5.11) ﬂ A(x;/a;,, x;/a,,) & f] A(x;/a;,, x;/a) & ...
k=1

k=1

& [ A(xi/ay,, x;/a,,)
k=1
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where each of the following sequences of individual constants: (¢) a;,, ..., @,
(Cy) @5 vvvs By (€3) Ggys oees Bg s - (C) yy5 05 Gy, has no repetitions. Thus
a direct answer to a question of the form (1.5.10) specifies exactly m different
values of x, and assigns to each of these values exactly n different values of x;; it
is neither assumed nor denied that the relevant values of x; are the same in all
cases.

Let us now analyze questions of the form:

(L512) 'CJC x;x; Ak, x5),
(1.5.13) 2C/C x;x; A(x;, x)),
(1.5.14) 3C/C x;x; A(x;, x)).
Direct answers to (1.5.12) have the form of:

(1.5.15)  A(x;/a;,, x;/a;) & ... & A(x/a;, x;/a;) & W, Ve LAl o)

(= @) & (x, = ap)) V... v(x, = a,) & (x, = a;)))s

where n>1 and the sentences A(x;/a;,X;/a;), .., A(x;/a;, x;/a;,) are
syntactically different. Thus we may say that a direct answer to a question of
the form (1.5.12) lists all the relevant values of x; and x;.

Direct answers to questions of the form (1.5.13) are sentences of the form:

(1.5.16) ﬂ ﬁ A(x/a,, x,/a,) & H Vx, (A(x,, X;/a;)

r=1k=1 =3
m m n
- (x, = a,)) & I Vx.(4(x;/a,, x.)— Y (x. = a;)),
k=1 k=1 r=1
where m, n > 1, all the individual constants ¢, , ..., q; are different and all the

individual constants a; , ..., a; are different. To speak generally, a direct an-
swer to a question of the form (1.5.13) specifies all the values of x; and assigns
to each of these values the same collection of the relevant values of x;.

Direct answers to questions of the form (1.5.14) fall under the following
scheme:

(1.5.17)  [] ACxi/ay,, x;/a,,) & Vx (4 (x;/a;, x;) = Y o= a,)
: k=1

k=1
& [] A(xi/ay,, x;la,,) & ¥x (A(x/a;,, X)) = Y (x,=ag)) & ...
k=1 k=1

I 1

& [1 Ax/a,, x;/a,,) & Vx (A (x/a;,, x;)— Y. k. =a,)

k=1 k=1

&Y, Nx (A (65, X )= 2 (3, == afe)),

e=1
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where n, r, s, ..., t > 1 and each of the following sequences of individual con-
stants: (¢) @, 0005 G5 (€1) 4,5 250585 (65) Gyygonns Gy 5 sz (Cp) By nen a, , has
no repetitions. Thus, roughly, a direct answer to a question of the form (1.5.14)
specifies all the relevant values of x; and assigns to each of these values a com-
plete list of the corresponding values of x;.

We will not present here the schemata of direct answers to the remaining
two-argument compound numerical questions as well as the schemata of direct
answers to more than two-argument compound numerical questions analyzed
by Kubinski. Let us only notice that some generalization of the concept of
compound numerical question is to be found in [22]; this paper modifies a bit
the approach of the monographs [21] and [25]. According to the new pro-
posal, compound numerical interrogative operators consist of some constants
and strings of interrogative quantifiers; these quantifiers, in turn, are analogues
of the simple numerical operators (see Section 1.3)

The vocabulary of the language ., of the new analysis of compound
numerical questions is the vocabulary of the language 2, (cf. Section 1.3)
enriched with the square brackets [ ] as new technical signs. Terms and d-wifs
of &, are the terms and d-wffs of ¥, (and thus of %)

A compound numerical question of the first kind is an expression of £, of
the following form:

(1.318) [Py s B K% v Kowa Bg, A

Al

25 wouy s

where A4 (x; , -.
free variables are the (listed) variables x;

igr "o

., X; ) is a sentential function of the language %, whose only
X, ,,and ky, ..., k.4, is a se-

quence of natural numbers which are greater than zero. Py, ..., P,, in turn, is
a sequence of natural numbers that fulfills the following conditions:

(@) if &, =2key, then P, < ki i3

(b) if k, < k,., then ¢ < P, < kg, where ¢ is the least natural number
such that txk, > ks, (x 1s the multiplication sign here).

The expressions k, x; , ..., k.41 X, ., are called interrogative quantifiers of
the first kind, whereas the sequence P, ..., P, is called the sequence of indices.
The expression [P, ..., P,Jk;x; ... k.1 X; ., is a compound numerical inter-
rogative operator of the first kind. The rationale of the conditions (a) and (b) is
to guarantee the existence of at least one direct answer to a compound numer-
ical question of the first kind. Roughly, the semantic function of an index P is
to indicate that exactly P, x; ., should be assigned to each of the distinguished

Is+1

kyx; . Thus a question of the form:
(1.5.19)  [1] 1x;1x;A(x;, x;)
can be read:

(1.5.20) Which one x; and one x; are such that A4(x, x;)?
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But a question of the form:

(1.5.21)  [1] 3x;1x; A (x;, x;)

can be read:

(1.5.21)  Which three x; and one x; are such that A(x;, x;)?
The question:

(1.5.22)  [2] 3x;3x; A (x;, x;)?

can, in turn, be read as:

(1.5.23)  Which three x; and three x; are such that A (x;, x;) and each of the x;
is associated with exactly two x;?

Similarly, the question:
(1.5.24)  [2, 1] 4x;3x;2x, A(x;, X, X))
may be read as follows:

(1.5.25)  Which four x;, three x;, and two x,; are such that 4(x;, x;, x,) and
each x, is associated with two x;, whereas each x; is associated with
exactly one x,?

Of course, a question of the form:
(152600 [l 1 1] 1955 oons 1% ALK 50555 %,)

in

may be also read as:

(1.5.27)  For which one x;, one x;, ..., and one x; , A(X;, ..., X;)?

The paper [22] does not contain a systematic analysis of compound nu-
merical questions whose operators contain interrogative quantifiers different
from “for which [exactly k] x;”. These questions are examined by Leszko in
[29] and [30], where the analysis of compound numerical questions is fur-
thered. Some generalization can also be found in [4]. It is easily seen that direct
answers to various compound numerical questions are very complicated and it
is not a trivial enterprise to assign to each such question a set of direct answers.
Leszko (cf. [29] and [30]) solved this problem for many questions by using
tools borrowed from graph theory and the theory of matrices. There are also
some close connections between compound interrogative operators and algeb-
raic structures; the papers of Kubinski [22] and Graczynska [4] provide some
interesting results in this field.

2. SYSTEMS OF THE LOGIC OF QUESTIONS

2.1. The logical basis. One may doubt whether the considerations present-
ed above belong to the logic of questions; the term “logical theory of questions”
seems more appropriate here. But what is the logic of questions about?
The opinions here are divided. Kubinski’s own proposal may be briefly express-
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ed as follows: the logic of questions consists of systems whose theses describe
either some basic relations between questions or different relations of answer-
hood between declarative sentences and questions. We shall present here two
systems of this kind built by Kubiniski: the system S and the system OR. These
systems are not the only systems of the logic of questions which can be found in
the papers of Kubinski; yet, they seem to be the most interesting from the
intuitive point of view. Let us add that some systems of the logic of questions
built up in the “spirit” of Kubinski can also be found in the papers of his
student Robert Leszko (cf. References).

In order to go on we need some supplementary concepts.

First, let us construct some new formalized language &*. This language
can be obtained from the languages .#, and ¥, described above; its vocabula-
ry is the sum of the vocabularies of £, and #,. The declarative well-formed
formulas (d-wifs) of #* are simply the d-wffs of £, and of #,. The questions
of %*, however, are the propositional questions of the language %, the simple
numerical questions of the language ., and the two-argument compound
numerical questions of the language %, exclusively.

Let us now supplement the language #* with a standard model-theoretic
semantics. To be more precise, an interpretation of £* is an ordered pair {/#, [,
where _# is a non-empty set (called the universe) and fis an interpretation function
defined on the set of individual constants and predicate symbols of #* in the
usual way. If M = (., f) is an interpretation of £*, then each infinite sequence
of the elements of M is called a M-valuation. The concept of value of a term under
aM-valuationis defined in the standard way. The concept of satisfaction of a d-wff
by a M-valuation is defined in the standard way for atomic d-wifs and d-wifs
containing the usual logical constants 1, &, v, —, =,V, 3, but alsoin such a way
that the equivalencies of the definitions DF. 1 - DF. 6 (see Section 1.4) are satisfied
by each M-valuation for each interpretation M. (We hope that the Reader will
forgive us this rough description of the definition of satisfaction; there is no room
for going into details.) By and large, the “unusual” logical constants of £* are
then understood according to the definitions DE. 1-DF. 6 formulated above.
A d-wff A of #* is true in an interpretation M of #* if and only if A is satisfied by
each M-valuation. A tautology is a d-wff which is true in each interpretation of
¥* A d-wff A is said to be satisfiable if and only if there is at least one
interpretation M such that A is satisfied by some 9M-valuation; otherwise A 1s
a contradiction. By a contradictory set of d-wffs we mean any set of d-wifs such that
for each interpretation 9 there is no M-valuation which satisfies all the d-wifs of
this set. A set of d-wffs X logically entails a d-wffs A4 if and only if for each inter-
pretation 9 and each M-valuation v, if all the d-wffs in X are satisfied by v, then
A is also satisfied by ». For some reason which will become clear in a moment we
also have to introduce some other concept of entailment, namely, the concept of
regular entailment. We say that a set of d-wifs X regularly entails a d-wff A if and
only if (1) X is not a contradictory set and X logically entails A, or (2) X is
a contradictory set and A is a contradiction.
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The relation of regular entailment is a consequence operation (in the sense
of Tarski) in each so-called homogeneous family of sets of d-wifs of #*; a fami-
ly ¢ of sets of d-wffs is said to be homogencous if and only if (1) ¢ 1s empty, or
(2) ¢ is non-empty and no element of ¢ is a contradictory set of d-wffs, or
(3) ¢ is non-empty and all the element(s) of ¢ are contradictory sets of d-wifs.
For a detailed description of the properties of regular entailment see the paper
of Kubinski [10].

We say that a d-wff A is equivalent to a d-wff B if and only if 4 logically
entails B and B logically entails A.

We shall use the letters Q, R (with subscripts if needed) as metalinguistic
variables for questions. The set of direct answers to a question Q (to a question
R) will be referred to as dQ (as dR).

2.2. The system S. At a first approximation we may say that the theses of
the system S tell us which questions are equipollent, which questions are stron-
ger than others, which questions are weaker than others, and which questions
are completely or partially independent from others. The analyzed relations
between questions are defined on the metatheoretical level in semantic terms.

We say that a question Q is equipollent to a question R if and only if there
exists a bijection i: dQ+ dR such that for each 4edQ, A is equivalent to_i(A4)
(i.e. to the corresponding element of dR).

A question Q is weaker than a question R if and only if Q is not equipollent
to R, but there exists a surjection i: dR +— dQ such that for each BedR, B regu-
larly entails i(B).

A question Q is stronger than a question R if and only if R is weaker than
0O, but O is not weaker than R.

A question Q is completely independent from a question R if and only if no
element of dQ is regularly entailed by any element of dR and no element of dR
is regularly entailed by any element of dQ.

A question Q is partially independent from a question R if and only if Q 1s
not completely independent from R, Q is not equipollent to R, and Q is neither
stronger nor weaker than R.

Note that if the relation of being stronger was defined by means of the
concept of logical entailment, we would obtain the following counterintuitive
consequence: each question whose all direct answers are contradictions is
stronger than any question.

Let us now describe the language of the system S; the symbolism presented
below differs in some details from the original symbolism adopted by Kubinski.

The vocabulary of the language ¥ of the system .S contains all the expres-
sions of the language #* which enable us to form questions of this language
and the following symbols: Eqp (“is equipollent to”), Wk (“is weaker than”),
Str (“is stronger than”), Cind (“is completely independent from”), Pind (“is
partially independent from”). In addition, the vocabulary of ¥ contains the
technical symbols ( ) (parentheses) and , (comma).
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The well-formed formulas of the language ¥ are all the expressions of
the following five forms: Eqp(Q, R), Wk(Q, R), Str(Q, R), Cind(Q, R),
Pind (Q, R), where Q and R are questions of ¥* (1.e. propositional questions,
simple numerical questions or two-argument compound numerical questions).

Let us stress that the language & does not contain compound formulas.

The system S is defined as the set of all the true formulas of the language ¥ .
The formulas of the form Eqp(Q, R), Wk(Q, R), Str(Q, R), Cind(Q,R),
Pind (Q, R) are true if and only if Q is equipollent to R, Q 1s weaker than R, Q is
stronger than R, Q is completely independent from R, and Q is partially in-
dependent from R, respectively. We shall be using the letter .S as referring to the
set of all the theses of the system S.

The following are examples of (meta)theorems of the system S:

T1. Eqp([a] a4, [B*] B* A, T14)

T2. Eqp([a]ad, [6']6" A)

T3. Eqp([a] a4, [a] o T14)

T4. Eqp([e]eAB, [B*]15> 14, A & B, A & 1B)

T5. Eqp([n] nAB, [f*1 A & B, A & T1B)

T6. Eqp([e] ¢AB, [¢] ¢4 T1B)

T7. Eqp([7] n4B, [n] nA71B)

T8 Eqp([0™]1 0" Ajs ooss dys [P A" Ay sovy Ay A jovnns Ay v 5 B i
A, ..., A,), where k =2".
Let us observe that theorems T1, T4, TS and T8 yield that each proposi-

tional question is equipollent to some disjunctive question.

A sentential function A(x;, ..., x;) is said to be normal just in case
A(x;, ..., x; ) is neither a tautology nor a contradiction and no sentence which
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results from A(x; , ..., x; ) by proper substitution of individual constants for
individual variables is a tautology or a contradiction. We assume that all the

sentential functions which occur in the questions considered below are normal.
T9. If k+1 =m, then Eqp(k < x; A(x;), m < x; A(x))).

Theorem T9 yields that simple numerical questions with the operators “for
which [more than k] x;” and “for which [at least k+ 1] x,” are equipollent.
Thus one of those categories of questions is superfluous.

T10. Eqp(‘1/m x, x, A (x,, x,), ’1/m x, x, A(x, x,)), where m>1 and 1<,
j<3

Theorem T10 yields that if 4 (x,, x,) is normal, then questions having the
forms '1/m x,x_A(x;, x,), 21/mx, x_ A(x;, x_), >1/mx, x_ A(x,, x,) are pair-
wise equipollent.

T11. Eqp('m/1 x, x, A (x,, x.), *m/1 x, x_ A(x,, x_)), where m = 1.
T12. If m > k, then Wk (kx; A (x;), mx; A (x;)).
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T13. If m > k, then Wk (kx; A(x;), m <x; A(x)).
T14. If m > k, then Wk (kx; A(x), m<x/l( ))-
T15. If m > k, then Wk (k <x; A(x;), m <x; A(x)).
T16. If m > k, then Wk (k <x; A (x l-],m<xi/l( ))-
T17. If k+1 = m, then Wk(k < x; A(x;)), m < x; A (x,)).
T18. If k+1 = m, then Wk(k < x; A(x;), m <x; A(x))).

T19. If k+1 = m, then Wk(kx; A (x;), m < x; A (x,).

T20. WK (‘m/1 x, x, A(x, x,), *m/1x, x_ A(X,, X)), wherem > land 1 < i <2.

T21. WK(*m/nx, x, 4 (x, x,), ’m/nx, x, A(x, X.)), where m> 1 and n> 1.

T22. Wk(im/nx,x, A(x,, x,), 's/tx, x, A(x,, X,)), where 1<i<3 and either
l<m<sand l1<sn<torl<m<sand 1 <n<t.

It is easy to find examples of the (meta)theorems with the constants Str,
Cind and Part; we leave it to the reader.

One my ask whether the usage of the word “system” is justified in the case
of S; a deductive system is usually defined as a set of formulas closed under
some consequence operation. Yet, Kubinski shows that there is a consequence
operation Cn, such that § is closed under Cn_. Let us designate by J(S) the set
of all well-formed formulas of the language .¥*. The function Chn, is defined as
follows:

(*) Cn(X)=8 if Xc<S8; otherwise Cr/(X)=J(S).

It can be shown that Cn_ is a consequence operation (in the sense of
Tarski) in the set 27®). It is obvious that the system .S is consistent; it can be
shown that S is also complete with respect to Cn, and J(S). Of course, S is
undecidable. ,

Although S is a deductive system, it is not an axiomatic system. It would
be an interesting enterprise to axiomatize S; yet, Kubinski did not suggest any
solution to this problem.

2.3. The system OR. Let us now describe the system OR of “logic of
answers” built by Kubinski. Roughly, the theses of this system describe dif-
ferent categories of answers to the analyzed questions. As in the case of the
system .S, we shall modify a bit the original symbolism of Kubinski; this can
make the reading of formulas easier.

The vocabulary of the language £ g of the system OR includes the voca-
bulary of the language ¥* (see Section 2.2) and the following expressions: da
(“is a direct answer to”), ida (“is an indirect answer to”), ada (“is an almost
direct answer to”), pida (“is a proper indirect answer to”), pta (“is a partial
answer to”), ar (“is an answer to ... relative to”). The well-formed formulas of the
language ¥ g are the expressions of the following forms: da (A4, Q). ida(4, Q),
ada (A4, Q), pida (A4, Q), pta(A4, Q), ar(A4, Q, B), where A and B are d-wifs of the



48 A. Wisniewski

language #* and Q is a question of the language £*. The system OR is defined
as the set of all the true well-formed formulas of the language ¥ ogr. The appro-
priate truth-conditions are at the same time semantic definitions of various
categories of answers (of course with the exception of the truth-conditions
for the formulas of the form da (A4, Q); here the definitions of direct answers
to various questions are taken for granted). These truth conditions are as
follows:

An expression of the form da(A4, Q) is true iff 4 is a direct answer
to Q.

An expression of the form ida (4, Q) is true iff A is not a direct answer to
Q, but A regularly entails some direct answer to Q.

Thus an indirect answer is a d-wif which regularly entails some direct
answer, but is not a direct answer itself. Let us observe that if the concept of
indirect answer was defined by means of logical entailment, we would obtain
the following paradoxical consequence: each contradiction which is not a di-
rect answer to a question is an indirect answer to this question.

An expression of the form ada (4, Q) is true iff the expression ida (A4, Q) is
true and A is equivalent to some direct answer to Q.

It follows that an almost direct answer is an indirect answer which is
equivalent to some direct answer.

An expression of the form pida (4, Q) is true iff the expression ida (4, Q) is
true, but A4 is not equivalent to any direct answer to 0.

Thus a proper indirect answer is an indirect answer which is not an almost
direct answer.

An expression of the form pta(4, Q) is true iff neither the expression
da (A, Q) nor the expression ida (A4, Q) is true, but there exists a d-wff B such
that (i) the following expressions are not true: da (B, (), ida(B, Q). and (11) at
least one of the following expressions is true: da(4 & B, Q), ida(4 & B, Q).

It follows that a partial answer is a d-wff which is neither a direct answer
nor an indirect answer, but which in conjunction with some d-wiff which is also
neither a direct answer nor an indirect answer forms some direct or indirect
answer.

An expression of the form ar (A, Q, B) is true iff the expression da (4 & B)
is true or the expression ida(4 & B) is true.

-According to the above condition, a d-wif A is an answer to a question
Q relative to a d-wif B just in case the conjunction 4 & B is either direct or
indirect answer to Q.

It is easy to find examples of theses of the system OR.

Let us add that the set of theses of the system OR is closed under some
consequence operation; moreover, the system OR is consistent and complete
(with respect to this consequence operation). Yet, it is still an open problem to
build up the system OR in an axiomatic form. The same holds true with respect
to the other systems of the logic of questions proposed by Kubinski.
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