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Abstract A set of well-formed formulas (wffs) is holistically inconsistent iff it is in-
consistent, but each wff in the set is consistent. We present a sequent calculus for
holistically inconsistent sets of wffs of Classical Propositional Logic. Since valid, in-
consistent, and contingent wffs correspond to different, yet strictly defined, holistically
inconsistent sets, a proof of a sequent based on holistically inconsistent set of a given
kind can be regarded, depending on the case, as a proof of a valid wff, a refutation of
an inconsistent wff, and a refutation of a contingent wff, respectively.
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1 Introduction

Consider a formal language supplemented with a bivalent semantics rich enough to
define some concept of truth of a well-formed formula (henceforth: wff) in a model.
The expression “model” is used here as a cover term; depending on the particular form
of the language, models are valuations of some kind, relational structures, and so on.
Usually, a formal language has many models of a given kind. When a non-empty class
of models,M, is fixed, the set of all wffs of the language splits, first, into two disjoint
subsets: ValM and NValM. The set ValM comprises all the wffs which are valid
w.r.t. the class of modelsM, that is, which are true in each model fromM. The set
NValM, in turn, comprises all the remaining wffs, that is, wffs which are not valid
w.r.t. the class of modelsM. However, the set NValM is far from being homogenous.
It includes inconsistent (also called unsatisfiable) wffs, that is, wffs which are not true
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in any model from the class M. But it also includes wffs which are consistent (or
satisfiable) without being valid, i.e. wffs which are true in some model(s) belonging to
the classM, but are not true in other models from the class. Following a philosophical
rather than a logical tradition, let us call these wffs contingent. To be more precise,
when a class of modelsM is fixed, the set NValM splits into the set IncM ofM-
inconsistent wffs (i.e. wffs which are not true in any model fromM) and the set CtgM
ofM-contingent wffs, that is, wffs which are neitherM-valid norM-inconsistent.

Looking from the proof-theoretic point of view, the main challenge for a logician is
to build a calculus which makes provable all the valid (w.r.t. a given class of models)
wffs and only them. Sometimes, as a by-product, a calculus gives an account of
inconsistent wffs as well. Analytic tableaux are paradigmatic examples here. However,
contingent wffs remain beyond the scope of interest. The (still rare) advocates of
refutation methods see the goal differently: they aim at proof-theoretic accounts of
non-validities (cf. Skura (2009), Skura (2011)). But the class of non-validities includes
both inconsistent wffs and contingent wffs. This distinction seems to play no role in
refutation calculi, however. Last but not least, logical calculi focussed on validities and
these focussed on non-validities operate with diverse formal means.

The aim of this short note is to present a calculus which, on the one hand, differ-
entiates between proofs of valid wffs, refutations of inconsistent wffs, and refutations
of contingent wffs. On the other hand, the calculus offers a uniform proof-mechanism.
This is achieved by the introduction of a kind of conceptual unifier, namely the no-
tion of a holistically inconsistent set of wffs. The system “calculates” such sets or,
more precisely, sequents based on them. Since valid, inconsistent, and contingent wffs
correspond to different, yet strictly defined, holistically inconsistent sets, a proof of a
sequent based on a set of a given kind can be regarded, depending on the case, as a
proof or as a refutation of the corresponding wff.

2 The logical basis

We remain at the level of Classical Propositional Calculus (CPL for short). As for the
language of (the analysed version of) CPL, we assume that the vocabulary comprises a
countably infinite set of propositional variables, the connectives: ¬,∨,∧,→,↔ , and
brackets.Well-formed formulas (henceforth: wffs) of the language are defined as usual.
We use A,B,C,D, with subscripts when needed, as metalanguage variables for wffs,
and X,Y , with or without subscripts or superscripts, as metalanguage variables for
sets of wffs. The letters p, q, r, s, t are exemplary elements of the set of propositional
variables of the language.

Let 1 stand for truth and 0 for falsity. A CPL-valuation is a function from the set of
wffs to the set {1,0}, satisfying the following standard conditions: (a) v(¬A) = 1 iff
v(A) = 0; (b) v(A ∨ B) = 1 iff v(A) = 1 or v(B) = 1; (c) v(A ∧ B) = 1 iff v(A) = 1
and v(B) = 1; (d) v(A → B) = 1 iff v(A) = 0 or v(B) = 1, (e) v(A ↔ B) = 1 iff
v(A) = v(B).
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For brevity, in what follows we will be omitting references to CPL. By wffs we will
mean wffs of the language of CPL, and by valuations we will mean CPL-valuations.

Definition 1 (Consistency, inconsistency, validity, and contingence). A set
of wffs X is consistent iff there exists a valuation v such that for each A ∈ X, v(A) = 1;
otherwise X is inconsistent. A wff B is:
1. consistent iff the singleton set {B} is consistent,
2. inconsistent iff the singleton set {B} is inconsistent,
3. valid iff for each valuation v, v(B) = 1,
4. contingent iff B is neither inconsistent nor valid.

CPL-entailment, |=, is defined as follows:
Definition 2 (Entailment). X |= A iff for each valuation v:

• if v(B) = 1 for every B ∈ X, then v(A) = 1.
The next definition introduces the crucial notion.

Definition 3 (Holistically inconsistent set; HI-set). A set of wffs X is holistically
inconsistent iff X is inconsistent, but each wff in X is consistent.

Observe that each HI-set has at least two elements.
The following are true:

Corollary 1. A wff C is contingent iff {C,¬C} is a HI-set.

Proof. (⇒) If C is a contingent wff, then there are valuations v, v∗ such that v(C) = 1
and v∗(C) = 0. So both C and ¬C are consistent wffs. On the other hand, the set
{C,¬C} is inconsistent. Therefore {C,¬C} is a HI-set.
(⇐) If {C,¬C} is a HI-set, then both C and ¬C are consistent wffs. Thus C is a
contingent wff. ut
Corollary 2. A wff C is inconsistent iff {C ∨ p,C ∨ ¬p} is a HI-set.

Proof. (⇒) Assume that C is an inconsistent wff. Each of the wffs: C ∨ p, C ∨ ¬p,
is consistent, however. On the other hand, the set {C ∨ p,C ∨ ¬p} is inconsistent and
hence is a HI-set.
(⇐) If {C∨p,C∨¬p} is aHI-set, it is an inconsistent set and hence {C∨p,C∨¬p} |=
p ∧ ¬p. It follows that {C,C ∨ ¬p} |= p ∧ ¬p and therefore C |= p ∧ ¬p. Thus C is
inconsistent. ut
Corollary 3. A wff C is valid iff {¬C ∨ p,¬C ∨ ¬p} is a HI-set.
Proof. (⇒) If C is valid, then ¬C is inconsistent. But, similarly as before, both ¬C∨ p
and ¬C ∨ ¬p are consistent wffs, and the set {¬C ∨ p,¬C ∨ ¬p} is inconsistent.
Therefore {¬C ∨ p,¬C ∨ ¬p} is a HI-set.
(⇐) The set {¬C∨p,¬C∨¬p}, as aHI-set, is inconsistent. Thus {¬C∨p,¬C∨¬p} |=
p∧¬p and therefore ¬C |= p∧¬p. It follows that ¬C is an inconsistent wff and hence
C is a valid wff. ut

Thus validity, inconsistency and contingency of wffs are expressible in terms of
HI-sets.
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3 The system HICPL

Since the system we are going to present “calculates” HI-sets, we label it by HICPL.
We operate with sequents of the form Y `, where Y is an at least two-element finite

set of CPL-wffs. In practice, we write down a sequent Y ` by listing the elements of
Y left to the turnstile. An inscription of the form ‘C ∈ CPL’ means ‘C is a thesis of
CPL’, i.e. is provable in CPL.

A sequent, Y `, is in the normal form iff each C ∈ Y is in the disjunctive normal
form (hereafter: DNF).

An axiom of HICPL is a sequent Y ` such that each B ∈ Y is an elementary
conjunction, a conjunction of all the wffs in Y involves complementary literals, and no
B ∈ Y involves complementary literals. Here are examples of axioms:

p,¬p ` (1)

¬p ∧ ¬q, p ` (2)

¬p ∧ ¬q, q ` (3)

¬p ∧ ¬q, p ∧ ¬q, q ∧ ¬p ` (4)

There are only two (primary) rules of HICPL, namely:

R1:
Y∪{A}` Y∪{B}`

Y∪{A∨B}`

R2:
Y∪{A}`
Y∪{B}` where (A↔ B) ∈ CPL.

Definition 4 (Proof of a sequent). A proof of a sequent Y ` in HICPL is a finite
labelled tree regulated by the rules ofHICPL, where the leaves are labelled with axioms
and Y ` labels the root.

A sequent Y ` is provable in HICPL iff the sequent Y ` has at least one proof in
HICPL.

Here are examples of proofs:

Example 1. A proof of the sequent ¬(p ∨ q),¬(¬p ∧ ¬q) `:

¬p ∧ ¬q, p ` ¬p ∧ ¬q, q `
¬p ∧ ¬q,¬¬p ` ¬p ∧ ¬q,¬¬q `

¬p ∧ ¬q,¬¬p ∨ ¬¬q `
¬p ∧ ¬q.¬(¬p ∧ ¬q) `
¬(p ∨ q),¬(¬p ∧ ¬q) `
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Example 2. A proof of the sequent (p ∨ q) ∧ ¬p, (p ∨ q) ∧ ¬q,¬p ∧ ¬q `:

q ∧ ¬p, p ∧ ¬q,¬p ∧ ¬q `
q ∧ ¬p, (q ∧ ¬q) ∨ (p ∧ ¬q),¬p ∧ ¬q `

q ∧ ¬p, (p ∨ q) ∧ ¬q,¬p ∧ ¬q `
(q ∧ ¬p) ∨ (p ∧ ¬p), (p ∨ q) ∧ ¬q,¬p ∧ ¬q `

(p ∨ q) ∧ ¬p, (p ∨ q) ∧ ¬q,¬p ∧ ¬q `
Provability of a sequent Y ` yields that Y is HI-set. This is due to

Theorem 1 (Soundness of HICPL w.r.t. HI-sets). Let Y be an at least two element
finite set of wffs. If the sequent Y ` is provable in HICPL, then Y is a HI-set.

Proof. Clearly, if Y ` is an axiom, then Y is a HI-set.
Assume that Y ∪ {A} and Y ∪ {B} are HI-sets. Thus each wff in Y is consistent.

Moreover, the set Y∪{A∨B} is inconsistent – otherwise Y∪{A}would be consistent or
Y ∪{B}would be consistent. Suppose that the set Y ∪{A∨B} contains an inconsistent
wff. Since each wff in Y is consistent, it follows that A ∨ B is inconsistent, and hence
both A and B are inconsistent. But in this case neither Y ∪ {A} nor Y ∪ {B} is a HI-set.
A contradiction.

It is obvious that if X ∪ {A} is a HI-set and (A ↔ B) ∈ CPL, then X ∪ {B} is a
HI-set. ut

Theorem 1 together with corollaries 3, 2 and 1 yield:

Theorem 2.

1. If the sequent ¬C ∨ p,¬C ∨ ¬p ` is provable in HICPL, then C is a valid wff.
2. If the sequent C ∨ p,C ∨ ¬p ` is provable in HICPL, then C is an inconsistent wff.
3. If the sequent C,¬C ` is provable in HICPL, then C is a contingent wff.

The next step is a non-standard one. We define provability of a wff in terms of
provability of a sequent of a strictly defined form. But, contrary to what is usually
done, we do not construe the provability of a wff C as the provability of the sequent
based on C or the negation of C only. The definition runs as follows:

Definition 5 (Proof of a wff). A HICPL-proof of a wff C is a proof of the sequent
¬C ∨ p,¬C ∨ ¬p ` in HICPL.

Example 3. A proof of p→ p:

p,¬p `
(p ∧ ¬p) ∨ p,¬p `

(p ∧ ¬p) ∨ p, (p ∧ ¬p) ∨ ¬p `
¬(p→ p) ∨ p, (p ∧ ¬p) ∨ ¬p `
¬(p→ p) ∨ p,¬(p→ p) ∨ ¬p `
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Similarly, we define refutability in terms of provability of sequents of strictly defined
form. This time, however, we introduce two concepts.

Definition 6 (Refutation1 of a wff). A HICPL-refutation1 of a wff C is a proof of
the sequent C ∨ p,C ∨ ¬p ` in HICPL.

Definition 7 (Refutation2 of a wff). A HICPL-refutation2 of a wff C is a proof of
the sequent C,¬C ` in HICPL.

Example 4. A refutation1 of ¬(p→ p):

p,¬p `
¬(¬p ∨ p) ∨ p,¬p `
¬(p→ p) ∨ p,¬p `

¬(p→ p) ∨ p,¬(¬p ∨ p) ∨ ¬p `
¬(p→ p) ∨ p,¬(p→ p) ∨ ¬p `

Example 5. A refutation2 of p→ q:

¬p, p ∧ ¬q ` q, p ∧ ¬q `
¬p ∨ q, p ∧ ¬q `
p→ q, p ∧ ¬q `

p→ q,¬(p→ q) `

The following holds:

Corollary 4.

1. If C has a HICPL-proof, then C is valid.
2. If C has a HICPL-refutation1, then C is inconsistent.
3. If C has a HICPL-refutation2, then C is contingent.

Proof. Immediately from Theorem 2 and definitions 5, 6, and 7. ut

3.1 The completeness issue

The system HICPL is complete with respect to finite HI-sets.

Theorem 3 (Completeness of HICPL w.r.t. HI-sets). Let Y be an at least two
element finite set of wffs. If Y is a HI-set, then a sequent of the form Y ` is provable in
HICPL.
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Proof. Assume that Y ` is in the normal form. Thus all the wffs in Y are in DNF.
By the rank of a sequent Y ` (in symbols: r(Y `)) we mean the number of

occurrences of the disjunction connective, ∨, in the wffs of Y .
Assume that Y is a finite HI-set. Note that Y has at least two elements.
Suppose that r(Y `) = 0. In this case, Y ` is an axiom of the system.
Suppose that r(Y `) > 0. Let r(Y `) = n.

Inductive hypothesis. If r(X `) < n and X is a HI-set of wffs in DNF, then the sequent
X ` is provable in HICPL.

If r(Y `) = n, where n > 0, the sequent Y ` can be displayed as:

A1, . . . ,Aj−1,B1 ∨ . . . ∨ Bk,Aj+1, . . . ,Am `

where B1, . . . ,Bk are elementary conjunctions and k > 1. As Y is a HI-set, at least one
of B1, . . . ,Bk is consistent.

Let Bi be a consistent element of {B1, . . . ,Bk}. Consider the sets Y ′ and Y ′′ defined
by:

Y ′ = {A1, . . . ,Aj−1,Bi,Aj+1, . . . ,Am}
Y ′′ = {A1, . . . ,Aj−1,B1 ∨ . . . ∨ Bi−1 ∨ Bi+1 ∨ . . . ∨ Bk,Aj+1, . . . ,Am}

Clearly, r(Y ′ `) < n and r(Y ′′ `) < n. Both Y ′ ` and Y ′′ ` are in the normal form.
If Y is a HI-set, so is Y ′. Thus, by the inductive hypothesis, the sequent Y ′ ` is

provable.
As for the sequent Y ′′ `, there are two cases to be considered.

Case 1. B1 ∨ . . .∨Bi−1 ∨Bi+1 ∨ . . .∨Bk is consistent. Thus Y ′′ is a HI-set. Hence, by
the inductive hypothesis, the sequent Y ′′ ` is provable. But one can get Y ` from Y ′ `
and Y ′′ ` by an application of rule R1 and then, if necessary, of rule R2.
Case 2. B1 ∨ . . .∨Bi−1 ∨Bi+1 ∨ . . .∨Bk is inconsistent. Thus all the disjuncts (of the
just considered disjunction) are inconsistent. If follows that Bi is CPL-equivalent to Aj.
(Clearly we have Bi |= Aj. But, as all the disjuncts of B1 ∨ . . .∨Bi−1 ∨Bi+1 ∨ . . .∨Bk
are inconsistent, their negations are valid and hence from Aj |= B1 ∨ . . . ∨ Bk we get
Aj |= Bi.) Thus one can get Y ` from Y ′ ` by R2.

Now assume that Y ` is not in the normal form. In order to complete the proof it
suffices to observe that each CPL-wff is CPL-equivalent to a wff in DNF and thus one
can always reach a wff from its DNF-counterpart by applying rule R2. ut

As a consequence of Theorem 3, Corollary 4, and definitions 5, 6, 7 one gets:

Theorem 4.

1. A wff C is valid iff C has a HICPL-proof.
2. A wff C is inconsistent iff C has a HICPL-refutation1.
3. A wff C is contingent iff C has a HICPL-refutation2.
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3.2 Final remarks

The methodology used in the construction of the system HICPL, and the basic idea of
the completeness proof, are very much alike to the methodology and idea applied, for
different purposes, in Skura and Wiśniewski (2015).

As for this paper, the homogeneity effect has been achieved by using the notion
of HI-set as a conceptual unifier. It is worth to note that the concept of minimally
inconsistent set could have been used for this purpose as well. A set of wffs X is a
minimally inconsistent set (MI-set for short) iffX is inconsistent, but each proper subset
of X is consistent. When one deals with CPL, inconsistency, validity and contingency
of wffs are expressible in terms of MI-sets as follows:

• A wff C is inconsistent iff {C} is a MI-set.
• A wff C is valid iff {¬C} is a MI-set.
• A wff C is contingent iff {C,¬C} is a MI-set.

Thus once we have a system which “calculates” MI-sets, we get an alternative
solution. A system of this kind exists (cf. Wiśniewski (2019)). The pros and cons issue
remains to be studied.

The last remark is this. As for classical logic and some non-classical logics, one can
define entailment by the clause:

(#) X entails A iff the set X ∪ {¬A} is inconsistent.
However, a set of wffs can be inconsistent in different ways. One can differentiate
between holistic inconsistency, minimal inconsistency, plain inconsistency, and so
forth. Given this, one can then define different kinds of entailment, depending on the
kind of inconsistency involved. In particular, if ‘inconsistent’ were replaced in (#) above
with ‘holistically inconsistent’, we would get a non-Tarskian consequence relation with
interesting properties. The systemHICPL offers a proof-theoretic account of entailment
defined in this way (for the classical propositional case). However, this is another story.
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