Andrzej Wisniewski

Propositions, Possible Worlds,
and Recursion’

1. Propositions are sometimes regarded as sets of possible worlds. This
idea, the first explicit formulations of which are attributed by Cresswell
(1972) to Montague (1969) and Stalnaker (1970), prima facie seems quite at-
tractive. However, the identification of propositions with sets of possible
worlds quickly puts us into a trouble: there are too many propositions. For let
us suppose that there exist denumerably many (by “denumerable” we mean,
here and below, “countably infinite”) possible worlds. Assume also that a
language in question comprises denumerably many (declarative) sentences.
Thus, by Cantor’s diagonal argument, the cardinality of the set of propo-
sitions is greater than the cardinality of the set of sentences. Now suppose
that the assignment of propositions to sentences is univocal, i.e. there is ex-
actly one proposition that corresponds to a sentence. It follows that there
are propositions which are not assigned to any sentence — generally speak-
ing, propositions which are not expressed by any sentence. Otherwise we
arrive at a contradiction. The situation is analogous when there are more
than denumerably many possible worlds. And nothing changes when the
language in question is formal and thus the sentences of the language are its
wellformed formulas.

2. The above drawback is easily visible.! In order to get rid of it one has
to take into consideration only an at most denumerable family of sets of

'"The situation resembles that known from discussions on the problem of adequacy of
intensional semantics. If propositions are sets of possible worlds, then, by Cantor’s diagonal
argument, there are more propositions than possible worlds. On the other hand, by the
so-called principle of plenitude (see Lindstrém 2009), which originates from Kaplan (see e.g.
Kaplan 1994; the relevant principle was introduced by him in the sixties) there are at least as
many possible worlds as there are propositions. This is the essence of Russell-Kaplan Paradox,
widely discussed in the literature.

*First published in Logic and Logical Philosophy 20, 2011, pp. 123-131. Reprinted here

with kind permission from the Nicolaus Copernicus University Press.
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possible worlds and to identify propositions with elements of the family.
Yet it is unclear what (if any) is the right criterion for choosing the family.

3. Another shortcoming of the analysed account of propositions is widely
known: it leads to a very coarse individuation of propositions. In particular,
there is only one proposition that corresponds to any contradiction, namely
the empty set. Similarly, there is only one proposition that corresponds to
any logical truth.?

4. The main aim of this paper is to point out a certain further difficulty faced
by the reduction of propositions to sets of possible worlds. The difficulty
arises on the condition that tools and results of (classical) recursion theory
are applicable, although in an indirect manner, to sets of possible worlds.
This, in turn, presupposes that not only sentences but also possible worlds
are represented by natural numbers in a one-to-one way.

The details of the relevant mapping will not play any role in our reason-
ing: we simply assume that a certain mapping exists, is fixed, and is such that
each sentence and each possible world is represented by exactly one natural
number, but there is no natural number which represents both a sentence
and a possible world. For brevity, we shall call the natural number which
represents a possible world or a sentence the code of the possible world or
the sentence.

5. Let W be an arbitrary but fixed infinite recursive set of possible worlds.
Or, to be more precise, let W be a denumerable set of possible worlds such
that the set [IW] of codes of elements of W is recursive.

Call a proposition any subset of .

Consider a language, £, which comprises denumerably many sentences
and for which there exists an assignment of propositions (taken from (1),
i.e. the power set of 1) to sentences of £. We assume that this assignment is
univocal. However, we do not prejudge the nature of the assignment. Tradi-
tionally, the proposition assigned to sentence A is conceived as the set of all
the possible worlds such that A is true in each world which belongs to the
relevant set. We neither assume nor deny that it is the case, however. We
simply suppose that to each sentence there corresponds exactly one propo-
sition.

The proposition assigned to sentence A will be referred to as |A|. The
set of codes of elements of |A| will be designated by [|A|]. In general, by [X]
we designate the set of codes of all the elements of X.

*For a recent discussion see e.g. Berto (2010).
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Let us introduce some auxiliary notions.

DEFINITION 1. Sentence A of L expresses proposition X € p(W) iff
= |A|.

DEFINITION 2. Proposition X € p(W) is
1. infinite iff X is denumerable,

2. recursive iff [X] is recursive,

3. recursively enumerable iff [X] is recursively enumerable.

There 1s no space for defining the concepts of recursion theory used;
they are basic and thus we assume that a reader is familiar with them. As
usual, we abbreviate “recursively enumerable” as “r.e.”.

6. We need one more concept. Let X be the set of all the sentences of £. We
define the following relation R* C X' x W between sentences and possible
worlds:

(VA € X)(Vw € W)(R"(A,w) <+ w € |A]).

Thus R*(A,w) holds just in case world w belongs to the proposition
expressed by A. Since sentences and possible worlds are, by assumption,
uniformly coded by natural numbers, there exists a 1-1 function, say, g,
such that g(x) is the sentence/possible world coded by x. Moreover, there
exists exactly one relation R C [X] x [W] between codes of sentences and
codes of possible worlds such that the following holds:

(Vz € [Z))(Vy € W])(R(x.y) + R*(g9(x),9(y)))-

We say that the assignment of propositions to sentences is effective iff R is
an re. relation. The underlying idea is: if a world is an element of the
proposition expressed by a sentence, this can be effectively established.

7. Now let us ask:

(%) Isit possible that each recursive proposition X € o(W) is expressed
by some sentence of £?

A remark is in order. There exist denumerably many infinite recursive sub-
sets of an infinite recursive set. Thus, to avoid triviality, let us suppose
that the language £ involves denumerably many sentences each of which
expresses an infinite proposition. Otherwise the answer to (x) would be
negative from the very beginning, for the assignment of propositions to sen-
tences is supposed to be univocal.
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8. Assume that £ is a language in which the assignment of propositions to
sentences is effective. Let ¥ be the set of all the sentences of £ that express
infinite propositions, 1.e.:

(1)  foreach A € U: |A| is denumerable.
Suppose that:

(2) W is denumerable,

3) [¥]isre

One can prove that then there exists an infinite family = of infinite recursive

subsets of (W) such that for each Y € = and each A € U:
Y #[AlL

Now let us take an arbitrary but fixed Y € =. Consider g(Y), i.e. the image
of Y under the function g that assigns possible worlds as well as sentences
to their codes (see Section 6). Clearly, g(Y) is a proposition belonging to
@(W). On the other hand, the image of [|A|] under g is |4, i.e. the propo-
sition expressed by A, for any sentence A. The above result yields that g(Y")
is different from |A|, for each Y € = and each A € ¥. In other words,
there are recursive infinite propositions® belonging to (W) which are not ex-
pressed by any sentence of L / are not assigned to any sentence of L. Thus, if the
assumptions specified above hold, the answer to the question () is negative.

Observe that the answer to a more general question:
(') Is it possible that each recursively enumerable proposition X from

©(W) 1s expressed by some sentence of £?

is also negative under the assumptions made above. The reason is simple:
each recursive proposition is an r.e. proposition as well.

9. For conciseness, let Rz = {y € rng(R) : xRy}, where rng(R) is the
range of a binary relation R.

The formal result presented in Section 8 is obtained in two steps.

) We define a certain relation R’ by:
VaVy (R (z.y) <> = € [W] A R(z.y)).
Recall that [¥] and R are, by assumption, r.e. Hence R’ is r.e. as well. We

obtain an effective deeply infinite double frame:*

* Actually, denumerably many of them.

*A double frame is an ordered triple (@, I', R), where @, I are non-empty sets and R C
I’ x @ is a relation whose domain is I. A double frame {®, I', R) is deeply infinite if & and
I are countably infinite sets, and each set R« is infinite, for all x € I'. A double frame
(@, I', R) is effective if P and I are sets of natural numbers, @ is recursive, I is r.e. and R is
an r.e. relation. Cf. Wisniewski & Pogonowski (2010).
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(W], [¥], R').
Note that R’ has the following property:

() {XC[W]:X = (R)"[A] for some A € ¥} =
={X C[W]:X =[|A|] for some A € V}.

@) We make use of the following theorem:’

The Recursive Jump Theorem (Wisniewski & Pogonowski 2010). For any
deeply infinite effective double frame (P, I, R) there exists an infinite family =
of infinite recursive subsets of P such that each element of = is different from any
Rz, forallz €T

10. Let us now reverse the picture by assuming that the language £ and
its semantics are built in such a way that each recursive proposition X €
©(W) is expressed by some sentence of £ and the relevant assignment (of
propositions to sentences) is still univocal. It follows that the set ¥ of all the
sentences of £ which express infinite propositions is denumerable.

Now, by the result presented in Section 8, at least one of the following,
(A) or (B), holds:
(A) [¥] isnotre.

An re. set is the set of values of a partial recursive function, and partial
recursive functions correspond to algorithms. Since sentences of £ are coded
by natural numbers, it follows that the set ¥ is not positively decidable. In
other words, there is no algorithmic procedure which is capable to identify,
in a finite number of steps, each element of the set of sentences expressing
infinite propositions.

(B)  the assignment of propositions to sentences is not effective.
Strictly speaking, (B) means that the relation R which fulfils the condition:
(Vz € [Z])(Vy € [W])(R(z,y) < R*(9(x), 9(1))).

is not r.e. But given that R* is defined by:
(VA € D) (Vw € W)(R* (A, w) & w e |A]).

and g is the “decoding” function, that is, a function that recovers sentences
and possible worlds from their codes, it follows that there occurs at least
one sentence such that some world(s) belong(s) to the proposition expressed

*For a direct application of the theorem in the area we are interested in here see
Wisniewski & Pogonowski (2010), pp. 38-39. The setting adopted in the present paper is

more general.
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by the sentence, but this can not be effectively established. Thus each al-
gorithmic procedure whose outputs are true statements saying that a world
belongs to the proposition expressed by the sentence, is incomplete in the
sense that it does not “reach”, in a finite number of steps, a certain true
statement of this kind.

11. The results of this paper can be interpreted in two ways. First, as “deep”
philosophical claims, telling something about the necessity of existence of
inexpressible propositions. Second, as a, just another one, argument against
the identification of propositions with sets of possible worlds. The reader is
free to choose between these options.
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