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Andrzej Wiśniewski 

REDUCIBILITY OF SAFE QUESTIONS 
TO SETS OF ATOMIC YES-NO QUESTIONS 

1. Yes-No Questions 

By a yes-no question we mean a question which can be satisfactorily 
answered by saying either “yes” or “no.” Usually the answer “yes” is 
regarded as an abbreviation of the sentence which can be obtained from 
the question by the conversion from the interrogative to the declarative 
mood, whereas the answer “no” is interpreted as an abbreviation of the 
negation of this sentence. According to the analysis which can be found 
in most textbooks, negation should be understood here in the sense of 
classical logic. For example, the interrogative sentence: 

(1) Did John marry Joan? 

is interpreted along the lines sketched above as expressing the question 
which has the following possible and just-sufficient (i.e. direct) answers:  

(2) John married Joan. 
(3) It is not the case that John married Joan. 

These answers contradict each other; the question must have a true direct 
answer and thus is a safe question. Let us call a question whose set of 
possible and just-sufficient answers consists of a sentence and its 
(classical) negation a simple yes-no question. 
 It can hardly be said, however, that each natural-language yes-no 
question can be adequately analyzed as a simple yes-no question. Even 
the interrogative sentence (1) can be interpreted differently. Let us 
observe that (1) can be pronounced with the following intonations 
(among others): 

(4) Did John marry Joan? 
(5) Did John marry Joan? 
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(6) Did John marry Joan?  

In all of the above cases the answer “yes” is an abbreviation of (2). The 
meaning of the reply “no,” however, changes from case to case. As far as 
(4) is concerned, the meaning of “no” is expressed by the sentence (3). 
Yet, in the case of (5) “no” means: 

(7) Someone else (not John) married Joan. 

The sentences (2) and (7) share the same background assumption, namely 
that someone married Joan; what is questioned is whether it was John. 
Similarly, in the case of (6) the reply “no” means: 

(8) John married someone else (not Joan). 

Both (2) and (8) presuppose that John married someone; what is inquired 
via (6) is whether it was Joan. So the questions (5) and (6) interpreted 
along the lines sketched above are no longer safe questions: it may 
happen that no direct answer to them is true (John may be a monk, and 
Joan a declared feminist). The questions (5) and (6) construed in the 
above manner are examples of focussed yes-no questions.  
 Let’s now consider the following interrogative sentence: 

(9) Did John marry Joan and love her? 

At first sight it may look like (9) expresses a yes-no question. Clearly the 
reply “yes” means: 

(10) John married Joan and loved her. 

But what is the meaning of the reply “no”? The negation of (10), viz.: 

(11) It is not the case that John married Joan and loved her. 

is a possible answer, but usually not a just-sufficient one. The just-
sufficiency condition is fulfilled by any of the following: 

(12) John married Joan, but he didn’t love her. 
(13) John didn’t marry Joan, but he loved her.  
(14) John neither married Joan nor loved her. 

Taking this interpretation for granted (of course, it is not the only 
possible one), (9) expresses a conjunctive question and not a yes-no 
question: it cannot be satisfactorily answered by saying either “yes” or 
“no.” Yet, its grammatical form is similar to that of yes-no questions. 
And it is still a safe question: it must have a true direct answer.  
 Let’s now consider the famous spouse-beating question: 
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(15) Has Joan stopped beating her husband? 

It is well-known that the reply “yes” should be construed as something 
like: 

(16) Joan has beaten her husband but has stopped. 

whereas the reply “no” means: 

(17) Joan has beaten her husband and has not stopped. 

If Joan never beat her husband, both (16) and (17) are false. So (15) is 
not a safe question. It is also clear that (15) is not a simple yes-no 
question: it is a conditional yes-no question. It is worth emphasizing that 
not only questions about forbearance can be regarded as conditional yes-
no questions. Let’s consider: 

(18) Given that Russia will constantly oppose NATO’s enlargement, 
will Ukraine join NATO? 

 The reply “yes” to (18) means: 

(19) Russia will constantly oppose NATO’s enlargement but Ukraine 
will join NATO. 

 The reply “no” to (18) means, in turn: 

(20) Russia will constantly oppose NATO’s enlargement and Ukraine 
will not join NATO.  

 The above considerations show that it is not the case that each yes-no 
question of a natural language should be construed as a simple yes-no 
question and thus a safe question. Of course, this fact is known to many 
logicians and linguists.1 It is also completely obvious that most questions 
cannot be construed as yes-no questions of any type. But the simple yes-
no questions are customarily regarded as the epistemologically prior 
questions. Among simple yes-no questions, in turn, questions whose sets 
of direct answers consist of an atomic sentence and its (classical) 
negation seem to have the logical priority; we shall call them atomic yes-
no questions. So the following questions arise: is it possible to reduce 
any question to simple yes-no questions? If not, what questions can be 
reduced in this way? And is it the case that each question that can be 
                                                 
1 See, e.g., Koj (1972), Belnap (1969), Hajièová (1983), Kiefer (1980, 1988). This is not 
to say, however, that all of them would accept the analysis of the above questions 
presented here. For details of this analysis, see Wiśniewski (1995), Chapter 3. 
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reduced to simple yes-no questions can be also reduced to atomic yes-no 
questions?  

2. Reducibility 

As usual, the answer depends on the meaning of the crucial term. Let us 
observe that one can speak of: (a) reducibility of a (single) question of 
some kind to a (single) question of another kind, or (b) reducibility of a 
(single) question of some kind to a set of questions of some kind or 
kinds. By and large, the former concept has been clarified in two ways: 
as an equivalence within a given calculus (see e.g. Åqvist 1965) or as 
some equivalence relation between questions which is defined in terms of 
(set-theoretic or semantic) relations between sets of their direct answers 
or in terms of relations between sets of presuppositions (cf. mainly 
Kubiński 1980, but also Belnap and Steel 1976). It is not surprising that 
no general results have been obtained in this perspective: it would have 
been rather strange if one had proved that, for example, a which-question 
can be reduced, in any reasonable meaning of the word “reduction,” to a 
simple yes-no question. The situation is different, however, in the case of 
the latter concept of reducibility. Now reducibility of a (initial) question 
to a set of (auxiliary) questions is under consideration. In order to find 
the correct answer to an initial question we usually pass to a number of 
auxiliary questions and try to answer them. This can be done in many 
ways; yet, there are some underlying logical relations which enable us to 
do this in a (relatively) safe and efficient way. In Wiśniewski (1994), the 
concept “a question is reducible to a non-empty set of questions” is 
defined in semantic terms. The proposed definition pertains to a 
formalized language: it is a first-order language enriched with questions 
and supplemented with a model-theoretic semantics. Some conditions are 
imposed on the language under consideration. In particular, it is assumed 
that to each question of the language there is assigned a set of declarative 
sentences of the language which contains at least two sentences; elements 
of this set are called direct answers to the question. Direct answers are 
defined syntactically; on the other hand they are regarded as the possible 
and just-sufficient (providing neither less nor more information than is 
called for) answers. They may be true or false. The intuitions which 
underlie the proposed definition of reducibility can be briefly described 
as follows. First, an initial question and the questions to which the initial 
question is reducible must be mutually sound: it is required that if a 
question Q is reducible to a set of questions Φ, then Q has a true direct 
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answer if and only if each question in Φ has a true direct answer. The 
second requirement is the efficacy condition: it is required that an initial 
question can always be answered by answering the questions to which it 
is reducible. To be more precise, it is required that if a question Q is 
reducible to a set of questions Φ, then each set made up of direct answers 
to the questions of Φ which contains exactly one direct answer to each 
question of Φ must entail some direct answer(s) to Q. The last 
requirement is the relative simplicity condition: all questions to which a 
given question is reducible are supposed to be no more complex than the 
initial question in the sense that no one of those questions has more 
direct answers than the initial question. The relevant concept of 
reducibility is then defined in semantic terms: we will introduce the 
definition below. Yet, in order to give a simple example let us observe 
that the question: 

(9) Did John marry Joan and love her? 

interpreted as a conjunctive question is reducible int.al. to the set of 
questions whose elements are: 

(21) Did John marry Joan? 
(22) Did John love Joan? 

provided that these are construed as simple yes-no questions. 
 When the concept of reducibility is clarified in the above manner, 
some solutions to our main problem emerge. First, it may be proved that 
each safe question (i.e., roughly, a question which must have a true direct 
answer; see below) is reducible to some set of questions exclusively 
made up of simple yes-no questions. It can also be proved that the 
relevant set of simple yes-no questions is finite if the initial question has 
a finite number of direct answers or entailment in the language is 
compact. We may even go further in this direction: one may prove that 
safety amounts to reducibility to sets of simple yes-no questions. Yet, in 
the case of risky questions, that is, questions which are not safe, the 
situation is far more complicated. It can be proved that each risky but 
proper and regular question2 is reducible to some set of questions made 
up of simple yes-no question(s) and exactly one question which is not a 
simple yes-no question, but nevertheless has exactly two direct answers. 
                                                 
2 Roughly, a question Q is proper and regular if no direct answer to it is entailed by the 
set of presuppositions of Q, but nevertheless the question Q has a presupposition whose 
truth guarantees the existence of a true direct answer to it (that is, which multiple-
conlusion entails the set of direct answers to Q). By a presupposition of a question Q we 
mean here a d-wff which is entailed by each direct answer to Q.  
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The negative result, however, is that no risky question is reducible to a 
set of questions whose elements are only simple yes-no questions. (For 
proofs and further results, see Wiśniewski 1994; see also Wiśniewski 
1995, Chapter 7.) 
 Risky questions are thus not reducible to homogenous sets of simple 
yes-no questions. But safe questions are reducible that way. So we may 
ask: is it the case that each safe question is reducible to some set of 
logically prior simple yes-no questions, that is, atomic yes-no questions? 
As we will see, the answer is rather complicated: there are conditions 
under which it is the case and conditions in which it is not.  
 In order to go on we have to introduce some logical apparatus.  

3. The Logical Basis 

First, we need some formalized language whose meaningful expressions 
are either declaratives or questions. There are many methods of 
constructing such languages (for an overview see, for example, Harrah 
2002, or Wiśniewski 1995). Most of the details of the construction are 
irrelevant for the purposes of this analysis, however. Thus we only 
assume that we have at out disposal some formalized language L  which 
consists of a declarative part as well as of an erotetic part and fulfills 
certain conditions. The declarative part of L  is a first-order language 
with identity whose vocabulary contains all the connectives ¬, ∨, &, ⊃, 
≡, the quantifiers ∀, ∃, and at least one closed term (i.e., a term with no 
individual variable). As far as the declarative part of L  is concerned, the 
concepts of term, atomic well-formed formula, (declarative) well-formed 
formula (d-wff for short), freedom and bondage of variables, etc., are 
defined as usual; by a sentence of L  we mean a d-wff of L  without free 
variables and by a sentential function we mean a d-wff which is not a 
sentence. The vocabulary of the erotetic part of L  contains some 
expressions which enable us to form questions of this language. 
Questions of L  are not d-wffs but they are the meaningful expressions of 
the erotetic part of L .  We do not decide, however, what is the particular 
form of questions of L : they may be constructed in some way or another 
(see, inter alia, Belnap and Steel 1976; Kubiński 1980; Harrah 2002; or 
Wiśniewski 1995). Yet, we assume that the following conditions are met: 
(1) the syntax of L  assigns to each question of L  an at least two-element 
set of sentences of L ; these sentences are called direct answers to the 
question and, looking from the pragmatic point of view, are regarded as 
the possible and just-sufficient answers; (2) for each sentence A of L  
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there exists the corresponding simple yes-no question of L  whose set of 
direct answers consists of the sentence A (called the affirmative direct 
answer) and the sentence ¬A (called the negative direct answer); (3) 
there are questions of L  which are not simple yes-no questions; (4) the 
set of questions of L  is denumerable.3  
 Some comments on the condition (1) are in order here. We require the 
question-answer relationship in L  to be purely syntactical. Moreover, we 
claim that it is the logical form of a question of L  which determines what 
counts as not only possible but also just-sufficient answer to the 
question. It is obvious that things look differently in natural languages. 
Although the syntactical form of a question is usually an important 
factor, it is not always the decisive one. There are cases in which some 
meaning components of a natural-language question play an important 
role. And in general, as many linguists and philosophers pointed out, 
there are cases in which it is strongly context-dependent what sentences 
may be counted as the possible and just-sufficient answers to some 
question: such pragmatic factors as, for example, intonation or other 
focus indicators, or the position of a question in a text or in a utterance, 
or the state of knowledge of the questioner, or his/her intentions, or the 
speech situation are relevant. Yet, questions of L  are questions of a 
formalized language and they only represent natural-language questions. 
The relation of representation we have in mind can be briefly described 
as follows: a question Q of L  represents a question Q* of a natural 
language construed in such a way that the possible and just-sufficient 
answers to Q* have the logical form of direct answers to Q. Thus we do 
not say that there is one-to-one correspondence between natural-language 
interrogative sentences and questions of L : if a natural-language 
question admits many readings, it has many representations. The richer 
the interrogative part of L  is, the more natural-language questions and/or 
their admissible readings can be represented. However, beyond the scope 
of such a representation system (and thus also beyond the scope of our 
analysis) are the so-called open natural-language questions, that is, 
questions whose possible and just-sufficient answers cannot be defined 
even if all the relevant syntactical/semantical/ pragmatical factors are 
known.  
 The condition (1), however, not only requires that the question-
answer relationship in L  is purely syntactical, but also claims, first, that 
each question of L  has at least two direct answers and, second, that each 
                                                 
3 In Wiśniewski (1994), some additional condition are imposed on L  as well. Yet, we will 
not make use of them in this paper.  
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direct answer is a sentence. The motivation for the first claim is 
philosophical: we think that a necessary condition of being a question is 
to present at least two “alternatives” or conceptual possibilities among 
which some selection can be made. The “Hobson choice” questions are 
thus excluded, but rhetorical questions are allowed – the selection need 
not be rational.4 Concerning the second clause: we want the direct 
answers to be the just-sufficient answers and those can be expressed only 
by sentences.  
 We shall use the letters A, B, C, . . . (with subscripts if needed) as 
metalinguistic variables for d-wffs of L , and the letters X, Y, Z as 
metalinguistic variables for sets of d-wffs of L . The symbols Q, Q1, . . . 
will be used as metalinguistic variables for questions and the capital 
Greek letters (with or without subscripts) as metalinguistic variables for 
sets of questions. The set of direct answers to a question Q will be 
referred to as dQ. In the metalanguage of L  we assume the Bernays-von 
Neumann-Gödel version of set theory; we adopt here the standard set-
theoretical terminology and notation. Sometimes we shall write “iff ” 
instead of “if and only if.”  
 The semantics of L  is basically the model-theoretic one. By an 
interpretation of L  we mean an ordered pair <U, f >, where U is a non-
empty set (the universe) and f is the interpretation function defined on 
the set of non-logical and non-erotetic constants of L  (that is, predicates, 
individual constants and − if there are any − function symbols) in the 
standard way. Of course, there are many interpretations of L . If I  is an 
interpretation, then by a I-valuation we mean an infinite sequence of the 
elements of the universe of I. The concepts of value of a term under a 
I-valuation and of satisfaction of a d-wff in an interpretation I  by a 
I-valuation are defined in the standard manner. A d-wff A is said to be 
true in an interpretation I if and only if A is satisfied in I by all 
I-valuations; by a model of a set of d-wffs we mean an interpretation in 
which all the d-wffs of this set are true. Note that the concept of truth 
does not apply to questions of L . In the case of questions, however, we 
use the concept of soundness. A question Q is said to be sound in an 
interpretation I  if and only if at least one direct answer to Q is true in I. 
 The further semantical concepts pertaining to L  are defined by means 
of the concept of normal interpretation of L . Yet, the language L  was 
characterized only in a schematic manner and in fact there are many 
languages which fulfil the conditions specified so far. For that reason we 
                                                 
4 Some logical theories of questions (for example, Belnap’s theory or Kubiński’s theory) 
allow questions of formalized languages which have only one direct answer, but it seems 
that this step is motivated rather by the pursuit of generality than other reasons. 
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only assume that the class of interpretations of L  includes a non-empty 
subclass (not necessarily a proper subclass) of normal interpretations, but 
we do not decide what the normal interpretations are in each particular 
case. If the declarative part of L  is an applied first-order language, 
normal interpretations can be defined as those in which some meaning 
postulates and/or axioms are true. Normal interpretations can also be 
defined for purely erotetic reasons. If L  contains questions about objects 
satisfying some conditions, it would be natural to define normal 
interpretations as those in which all the objects called for have names 
(are values of some closed term(s)): by doing so we would avoid the 
paradoxical consequence that there are objects which satisfy the 
appropriate conditions, but nevertheless the corresponding questions 
have no true answers. There are also other possibilities of defining 
normal interpretations (for more information, see Wiśniewski 1995, 
pp. 104-105). We do not even exclude that the class of normal 
interpretations of some language of the considered kind is equal to the 
class of all interpretations of this language. Yet, for the purposes of this 
analysis the assumption about the existence of a non-empty class of 
normal interpretations is sufficient.  
 By means of normal interpretations we shall define the relevant 
concepts of entailment in L . We will introduce two concepts of 
entailment: multiple-conclusion entailment being a relation between sets 
of d-wffs and (single-conclusion) entailment understood as a relation 
between sets of d-wffs and single d-wffs.  

DEFINITION 1. A set of d-wffs X of L  multiple-conclusion 
entails (mc-entails for short) in L  a set of d-wffs Y of L iff the 
following condition holds: 

(#) for each normal interpretation I  of L : if all the d-wffs in 
X are true in I, then at least one d-wff in Y is true in I. 

DEFINITION 2. A set of d-wffs X of L  entails in L  a d-wff A of 
L  iff A is true in each normal interpretation of L  in which all the 
d-wffs in X are true.  

 Note that the above concepts are defined in terms of truth and not of 
satisfaction. Note also that in the general case mc-entailment cannot be 
defined in terms of (single-conclusion) entailment. For instance, assume 
that the declarative part of L  is the language of Classical Predicate 
Calculus and that each interpretation of L  is a normal one. Then the 
singleton set {A ∨ B}, where A, B are atomic sentences, mc-entails the set 
{A, B}, but neither A nor B is entailed by the set {A ∨ B}. On the other 
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hand, entailment can be defined in terms of mc-entailment as multiple-
conclusion entailment of a singleton set. 
 The concept of multiple-conclusion entailment proved it usefulness in 
the logic of questions in many ways. (For the properties of 
mc-entailment, see Shoesmith & Smiley 1978; see also Wiśniewski 1995, 
pp. 107-113.) 
 Since the concept of normal interpretation was left unspecified, the 
same pertains to the above concepts of entailment. But since the class of 
normal interpretations was assumed to be a subclass of the class of all 
interpretations, logical entailment (defined in the manner similar to that 
of Definition 2, but with respect to any interpretation) is a special case of 
entailment in L . We may also say that, in particular, any disjunction of 
sentences (or, to be more precise, a singleton set containing this 
disjunction) mc-entails in L  the set made up of the appropriate disjuncts.  
 In what follows the specification “in L  ” will normally be omitted. 
We shall use the symbol ╠ for mc-entailment in L and the symbol ╞ for 
entailment in L . We shall write A╠ Y instead of {A}╠ Y. 
 The relation ╠ is said to be compact if and only if for any sets of 
d wffs X, Y such that X╠ Y there exist a finite subset X1 of X and a finite 
subset Y1 of Y such that X1╠ Y1. In the case of ╞ the concept of 
compactness is understood in the standard way. It may be proved that 
mc-entailment in a language is compact if and only if entailment in this 
language is compact. However, we neither claim nor deny that entailment 
in L  and mc-entailment in L  are compact. Compactness of entailment in 
a language depends on the conditions imposed on the class of normal 
interpretations of the language and there are languages of the considered 
kind in which entailment is compact and languages in which it is not.  
 We are now ready to define the concept of reducibility of questions. 

DEFINITION 3. A question Q is reducible to a non-empty set of 
questions Φ iff 

(i) for each direct answer A to Q, for each question Qi of Φ: A 
mc-entails the set of direct answers to Qi, and 

(ii) each set made up of direct answers to the questions of Φ 
which contains exactly one direct answer to each question of 
Φ entails some direct answer to Q, and  

(iii) no question in Φ has more direct answers than Q.  

 For conciseness, the non-emptiness clause will be omitted in the 
sequel. Also for the sake of brevity we shall introduce the notion of a 
μ(Φ)-set. Let Φ be a non-empty set of questions. By a μ(Φ)-set we mean 
a set made up of direct answers to the questions of Φ which contains 
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exactly one direct answer to each question of Φ. By means of this 
concept the second clause of Definition 3 can be expressed as follows: 
each μ(Φ)-set entails some direct answer to Q. When saying that no 
question in Φ has more direct answer than Q we mean that the cardinality 
of the set of direct answers to any question of Φ is not greater than the 
cardinality of the set of direct answers to Q.  
 Let us finally clarify the erotetic concepts of safety and riskiness. A 
question Q of L  is said to be safe if and only if Q is sound (has a true 
direct answer) in each normal interpretation of L ; otherwise Q is said to 
be risky. (It is easy to observe that safety can be also defined in terms of 
mc-entailment: a question Q is safe iff the set of direct answers to Q is 
mc-entailed by the empty set.) Note that a question can be safe although 
no direct answer to it is valid (i.e. is true in each normal interpretation of 
the language)! Of course, each simple yes-no question is safe, but there 
are also safe questions which are not simple yes-no questions.  
 In what follows we will be frequently speaking of simple yes-no 
questions, so, to simplify matters, we need a temporary notation for 
them. We shall write them down as ? {A, ¬A}. Under this notational 
convention the signs ?, {, } belong to the (erotetic part of the) object-
language5. Yet, we might have adopted some other notational convention 
for simple yes-no questions as well. The advantage of this one is that it 
makes explicit what the direct answers to a simple yes-no question are: 
these are the sentences enclosed in {  }.  
 Let us finally recall that an atomic yes-no question is a simple yes-no 
question whose affirmative direct answer is an atomic sentence (i.e., a 
sentence built up of a predicate and closed term(s)) and whose negative 
direct answer is the negation of this atomic sentence. In other words, an 
atomic yes-no question has the form ? {B, ¬B}, where B is an atomic 
sentence. 

4. The Quantifier-Free Case 

It can be shown that in the case of quantifier-free safe questions the 
reduction to homogenous sets of atomic yes-no questions is always 
possible. By a quantifier-free question we mean a question whose direct 
answers contain no occurrence of a quantifier.  
 Let us prove 
                                                 
5 Of course, the brackets {  } also occur in the metalanguage in their normal roles.  
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LEMMA 1: Let A be a quantifier-free sentence. Then the simple 
yes-no question ? {A, ¬A} is reducible to some finite set of atomic 
yes-no questions.  

 PROOF: Let us observe that the clauses (i) and (iii) of the definition 
of reducibility are fulfilled by each set made up of atomic yes-no 
questions with respect to any “initial” question. The clause (i) is fulfilled 
because the set of direct answers to an atomic yes-no question is 
mc-entailed by any d-wff; the clause (iii) is satisfied since each question 
has at least two direct answers and an atomic yes-no question has exactly 
two direct answers. So it remains to be shown that for each quantifier-
free sentence A there exists a finite set of atomic yes-no questions Φ such 
that for each μ(Φ)-set Y, Y entails the sentence A or the sentence ¬A.  
 The proof goes on by induction on the structure of A.  

(1) Assume that A is an atomic sentence. Let Q = ? {A, ¬A}. So {Q} is 
a finite set made up of atomic yes no-questions. On the other hand, 
it is obvious that {A} ╞ A and {¬A} ╞ ¬ A.  

(2) Assume that A is of the form ¬B. By induction hypothesis there 
exists a finite set Φ of atomic yes-no questions such that for each 
μ(Φ)-set Y we have Y ╞ B or Y ╞ ¬B. But B ╞ ¬A and ¬B ╞ A. So 
each μ(Φ)-set entails A or entails ¬A.  

(3) Assume that A is of the form B & C. By induction hypothesis there 
are a finite set Φ1 of atomic yes-no questions and a finite set Φ2 of 
atomic yes-no questions such that for each μ(Φ1)-set Y we have 
Y ╞ B or Y ╞ ¬B, and for each μ(Φ2)-set Z we have Z ╞ C or 
Z ╞ ¬C. On the other hand, the following hold: 

(a) {B, C} ╞ A, 
(b) {B, ¬C} ╞ ¬A, 
(c) {¬B, C} ╞ ¬A, 
(d) {¬B, ¬C} ╞ ¬A. 

Let Φ = Φ1 ∪ Φ2. Each μ(Φ)-set equals to a union of a μ(Φ1)-set 
and a μ(Φ2)-set. But each μ(Φ1)-set entails B or entails ¬B, and 
each μ(Φ2)-set entails C or entails ¬C. So by the conditions (a) – 
(d) each μ(Φ)-set entails A or entails ¬A. It is obvious that Φ is a 
finite set made up of atomic yes-no questions.  

(4) Assume that A is of the form A ∨ B. We proceed as above by 
means of the following facts: 

(e) {B, C} ╞ A, 
(f) {B, ¬C} ╞ A, 
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(g) {¬B, C} ╞ A, 
(h) {¬B, ¬C} ╞ ¬A. 

(5) Assume that A is of the form B ⊃ C. We proceed analogously as 
above by using the following: 

(i) {B, C} ╞ A, 
(j) {B, ¬C} ╞ ¬A, 
(k) {¬B, C} ╞ A, 
(l) {¬B, ¬C} ╞ A. 

(6) Assume finally that A is of the form B ≡ C. We use the following: 

(m) {B, C} ╞ A, 
(n) {B, ¬C} ╞ ¬A, 
(o) {¬B, C} ╞ ¬A, 
(p) {¬B, ¬C} ╞ A. 

 ■ 

 Lemma 1 yields 

THEOREM 1. Each quantifier-free simple yes-no question is 
reducible to some finite set of atomic yes-no questions.  

 Thus quantifier-free simple yes-no questions are reducible to sets of 
logically prior questions, that is, atomic yes-no questions.  
 Let us now consider the possibility of reduction of any quantifier-free 
safe question to a homogenous set of atomic yes-no questions.  
 We shall first prove 

THEOREM 2. If Q is a quantifier-free safe question, then Q is 
reducible to some set of quantifier-free simple yes-no questions; if 
moreover Q has a finite number of direct answers or entailment in 
the language is compact, then Q is reducible to some finite set of 
quantifier-free simple yes-no questions.  

 PROOF: Let Q be a quantifier-free safe question. Direct answers are 
sentences and the set of direct answers to each question is at most 
countable. Let s = A1, A2, . . . be a fixed sequence without repetitions of 
direct answers to Q such that each direct answer to Q is an element of s. 
Let us then define the following set of simple yes-no questions:  

Φ = {Q*: Q* is of the form ? {Ai, ¬Ai}, where i > 1} 

In other words, Φ consists of the simple yes-no questions based on the 
elements of the sequence s with the exception of the simple yes-no 
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question based on the first element of s. It is clear that the clauses (i) and 
(iii) of Definition 3 are fulfilled by Φ with respect to Q. Let Y be a μ(Φ)-
set. There are two possibilities: (a) the set Y contains some affirmative 
direct answer(s) to the questions of Φ, (b) the set Y is made up of the 
negative direct answers to the questions of Φ. If the possibility (a) holds, 
then – since the affirmative direct answers to the questions of Φ are also 
direct answers to Q – the μ(Φ)-set Y entails some direct answer(s) to Q. 
Suppose that the possibility (b) takes place. Since Q is a safe question, 
then ∅ ╠ dQ. It follows that Y ╞ A1. So there is a direct answer to Q 
which is entailed by Y. But Y was an arbitrary μ(Φ)-set. Therefore Q is 
reducible to Φ. It is obvious that the set Φ constructed in the above 
manner consists of quantifier-free simple yes-no questions. Moreover, it 
is also clearly visible that if Q has a finite number of direct answers, then 
– since each question has at least two direct answers – the set Φ 
constructed according to the above pattern is finite and nonempty.  
 Let us now assume that entailment in L  is compact and that Q is an 
arbitrary but fixed quantifier-free safe question. If entailment is compact, 
so is mc-entailment. So there is an at least two-element subset Z of the 
set of direct answers to Q such that ∅ ╠ Z (if ∅ entails some direct 
answer to Q, it also mc-entails each at least two-element subset of dQ 
which contains this answer; if ∅ does not entail any single direct answer 
to Q, then by compactness there is an at least two-element finite subset of 
dQ which is mc-entailed by ∅). We fix some at least two-element finite 
subset of the set of direct answers to Q which is mc-entailed by the 
empty set and then proceed as above; as the outcome we obtain a finite 
set of quantifier-free simple yes-no questions such that Q is reducible to 
this set.  

 ■ 

 We can now prove 

THEOREM 3. Each quantifier-free safe question Q is reducible to 
some set of atomic yes-no questions; if moreover Q has a finite 
number of direct answers or entailment in the language is 
compact, then Q is reducible to a finite set of atomic yes-no 
questions. 

 PROOF: Assume that Q is a quantifier-free safe question. According 
to Theorem 2, Q is reducible to some set of quantifier-free simple yes-no 
questions (a finite set if Q has a finite number of direct answers or 
entailment in L  is compact). Let Φ be a fixed set of quantifier-free 
simple yes-no questions such that Q is reducible to Φ; if Q has a finite 
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number of direct answers or entailment in the language is compact, Φ is 
supposed to be a finite set. By Theorem 1 each question in Φ is reducible 
to some finite set of atomic yes-no questions. We associate each question 
in Φ with exactly one finite set of atomic yes-no questions such that the 
considered question of Φ is reducible to this set. Let Ψ be the union of 
sets of atomic yes-no questions associated with the questions of Φ in the 
above manner. The set Ψ is a homogenous set of atomic yes-no 
questions. It is clear that the clauses (i) and (iii) of Definition 3 are met 
by Ψ with respect to Q.  
 Let Y be a μ(Ψ)-set. It is easily seen that Y entails some direct answer 
to each question of Φ. So there exists a μ(Φ)-set, say, X, such that each 
normal interpretation which is a model of Y is also a model of X. But 
since Q is reducible to Φ, the μ(Φ)-set X entails some direct answer to Q. 
Therefore the μ(Ψ)-set Y entails some direct answer to Q. But since Y 
was an arbitrary μ(Ψ)-set, it follows that the clause (ii) of Definition 3 is 
also fulfilled by Ψ with respect to Q. Therefore Q is reducible to Ψ, 
where Ψ is a set of atomic yes-no questions. It is clear that if Q has a 
finite number of direct answers or entailment in the language is compact, 
then Ψ is a finite set.  

 ■ 

 Theorem 3 shows that in the case of quantifier-free safe questions the 
reduction to sets of atomic yes-no questions is always possible; 
moreover, it shows that in some cases the reduction to finite sets of 
atomic yes-no questions is possible as well. Note that no assumptions 
concerning the particular form of the semantics of L  have been used in 
the proofs of the above theorems; it follows that the reducibility of 
quantifier-free safe questions to sets of atomic yes-no questions takes 
place in every language of the considered kind.  

5. The General Case 

So far we have restricted ourselves to quantifier-free safe questions. But 
what happens if the initial question is not quantifier-free? 
 Sometimes the initial safe question Q is not quantifier-free, but 
nevertheless it is reducible to some set of quantifier-free simple yes-no 
questions. One can easily prove 

THEOREM 4. Let Q be a safe question. If Q is reducible to some 
set of quantifier-free simple yes-no questions, then Q is reducible 
to some set of atomic yes-no questions; if moreover Q is reducible 



230 Andrzej Wiśniewski 

 

to some finite set of quantifier-free simple yes-no questions, then Q 
is reducible to some finite set of atomic yes-no questions. 

 PROOF: Similar to that of Theorem 3. It is obvious that if Q is 
reducible to a finite set of quantifier-free simple yes-no questions, then 
the resultant set Ψ is finite.  

 ■ 

 Yet, there is no guarantee that each safe question is reducible to a set 
of quantifier-free simple yes-no questions (although, as we shall see, 
there is a guarantee that each safe question is reducible to some set of 
simple yes-no questions). Moreover, there are examples which show that 
Theorem 3 cannot be generalized to any safe question with respect to any 
language of the considered kind. Here is a very simple example: assume 
that the declarative part of L  is the language of Monadic Classical 
Predicate Calculus and that each interpretation of L  is a normal one. Let 
us then consider a simple yes-no question of the form ? {∀P(x), ¬∀P(x)}, 
where P is a predicate. At first sight it may look as if the above question 
is reducible to the set made up of atomic yes-no questions of the form 
? {P(t), ¬P(t)}, where t is a closed term. Yet, the set which contains only 
the affirmative direct answers to the above questions does not entail any 
direct answer to the initial question. The reason is that there may exist 
some “unnamed” elements of the domain which do not satisfy the 
sentential function P(x).  
 The above example not only shows that the reducibility to sets of 
atomic yes-no questions does not always hold, but also suggests a certain 
sufficient condition whose satisfaction enables reducibility of any safe 
question to a set of atomic yes-no questions.  
 Let Ax be a sentential function with exactly one free variable. Let us 
designate by S(Ax) the set of sentences which result from the sentential 
function Ax by proper substitution of a closed term for the variable which 
occurs free in Ax (i.e. the set of sentences which have the form A(x/t), 
where t is a closed term). Let us now consider the following condition: 

(ω) for each sentential function Ax with exactly one free variable, 
∃ x Ax ╠ S(Ax). 

The condition (ω) says that for each sentential function with exactly one 
free variable, the existential generalization of this sentential function 
multiple-conclusion entails the set of sentences which are instantiations 
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of this sentential function.6 In other words, the condition (ω) requires that 
for each normal interpretation of the language the truth of the existential 
generalization of a sentential function with exactly one free variable 
guarantees that at least one sentence which results from this sentential 
function by proper substitution of a closed term for the free variable is 
true. It follows that the set of normal interpretations of the considered 
language must be a proper subclass of the class of all interpretations of it: 
as a matter of fact the normal interpretations are those, in which all the 
elements of the universe have names (to be more precise, the condition 
(ω) is fulfilled if for each element y of the universe there exists a closed 
term t such that for any valuation s, y is the value of t under s). It is clear 
that the condition (ω) is met only by some languages of the considered 
kind. But we may prove that if the condition (ω) does hold in the case of 
some language, each simple yes-no question of this language is reducible 
to a set of atomic yes-no questions.  
 In order to continue we need the concept of prenex normal form of a 
d-wff: this concept is understood here in the standard sense. It is a 
well-known fact that for each d-wff there exists a logically equivalent 
d-wff in prenex normal form which contains the same free variables as 
the initial d-wff. Since logical entailment yields entailment in a language, 
then for each sentence A there exists a sentence B in prenex normal form 
such that A ╞ B and B ╞ A. One can easily prove 

LEMMA 2. If A is a sentence and B is a sentence in prenex normal 
form such that A ╞ B and B ╞ A, then the question ? {A, ¬A} is 
reducible to a set of questions Φ iff the question ? {B, ¬B} is 
reducible to the set Φ. 

 Now we shall prove 

LEMMA 3. If the following condition holds: 

(ω) for each sentential function Ax with exactly one free 
variable, ∃x Ax╠ S(Ax)  

then for each sentence B in prenex normal form, the simple yes-no 
question ? {B, ¬B} is reducible to some set of atomic yes-no 
questions.  

 PROOF: Let B be a sentence in prenex normal form. As above, let us 
observe that the clauses (i) and (iii) of the definition of reducibility are 
                                                 
6 Let us recall here, however, that the set of closed terms of L   need not be (but of course 
can be) infinite – we only imposed the non-emptiness condition on it.  
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fulfilled by any set of atomic yes-no questions with respect to the 
question ? {B, ¬B}. So it remains to be proved that for each sentence B in 
prenex normal form there exists a set of atomic yes-no questions Φ such 
that for each μ(Φ)-set Y, Y entails the sentence B or the sentence ¬B. The 
proof will go on by induction on the number of layers of quantifiers in 
the prefix of B.  
 Assume that the sentence B contains no layers of quantifiers. Since B 
is in prenex normal form, it follows that B is a quantifier-free sentence. 
So by Lemma 1 the question ? {B, ¬B} is reducible to some set Φ of 
atomic yes-no questions and thus for each μ(Φ)-set Y, Y entails the 
sentence B or the sentence ¬B. 
 Assume now that B contains n layers of quantifiers in its prefix, where 
n > 0. By induction hypothesis for each sentence C in prenex normal 
form that contains n-1 layers of quantifiers in its prefix there exists a set 
of atomic yes-no questions Σ such that for each μ(Σ)-set X, X entails C or 
entails ¬C.  
 We have four possibilities: 

(a) B is of the form ∀xD, where D is in prenex normal form, contains 
n-1 layers of quantifiers in its prefix and x is not free in D, 

(b) (b) B is of the form ∀xD, where D is in prenex normal form, 
contains n-1 layers of quantifiers in its prefix and x is free in D, 

(c) (c) B is of the form ∃xD, where D is in prenex normal form, 
contains n-1 layers of quantifiers in its prefix and x is not free in 
D, 

(d) (d) B is of the form ∃xD, where D is in prenex normal form, 
contains n-1 layers of quantifiers in its prefix and x is free in D. 

 If the possibility (a) holds, then – since B is a sentence – D is also a 
sentence; moreover, we have D ╞ B as well as B ╞ D and thus ¬D ╞ ¬B. 
The sentence D contains exactly n-1 layers of quantifiers and is in prenex 
normal form. Thus, by induction hypothesis there exists a set of of 
atomic yes-no questions, say, Φ, such that for each μ(Φ)-set Y, Y entails 
the sentence D or the sentence ¬D. Therefore for each μ(Φ)-set Y, Y 
entails the sentence B or the sentence ¬B 
 Suppose that the possibility (b) takes place. Now D is a sentential 
function with x as the only free variable; let us designate it by Dx. Let us 
now introduce the set S(Dx), i.e., the set of sentences of the form D(x/t), 
where t is a closed term. Since the set of closed terms is nonempty, so is 
the set S(Dx); moreover, this set is made up of sentences in prenex 
normal form which contain exactly n-1 layers of quantifiers in their 
prefixes. So by induction hypothesis for each sentence C in the set S(Dx) 
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there exists a set Ψ of atomic yes-no questions such that each μ(Ψ)-set 
entails the sentence C or the sentence ¬C. Let us now consider a union of 
such sets of questions; to be more precise, for each C ∈ S(Dx) choose 
exactly one set of atomic yes-no questions which fulfill the inductive 
hypothesis and consider the set, say, Φ, which is the union of these sets. 
Let Y be a μ(Φ)-set. There are two possibilities: (1) the set Y entails each 
sentence from the set S(Dx), i.e., each sentence of the form D(x/t), where 
t is a closed term; (2) the set Y entails some sentence of the form ¬D(x/t). 
In the case of (2) Y entails the sentence ¬B. Let us now consider the case 
(1). Suppose that Y does not entail the sentence B, i.e., the sentence 
∀x Dx. So there is a normal interpretation I  such that I  is a model of Y 
and the sentence ∃x ¬Dx is true in I. By assumption we have 
∃x ¬Dx ╠ S(¬Dx). So at least one sentence of the form ¬D(x/t) is true in 
I. But Y entails each sentence of the form D(x/t). Therefore each such 
sentence is true in I. We arrive at a contradiction. So Y entails the 
sentence B. Thus we may say that each μ(Φ)-set entails the sentence B or 
the sentence ¬B.  
 If the possibility (c) holds, we proceed as in the case of (a). 
 Suppose finally that the possibility (d) takes place. Again, D is now a 
sentential function with x as the only free variable. We designate it by 
Dx. Then we construct the set Φ as in the case of (b). Let Y be a μ(Φ)-set. 
There are two possibilities: (1) the set Y entails some sentence from the 
set S(Dx), i.e., some sentence of the form D(x/t), where t is a closed term; 
(2) the set Y entails each sentence of the form ¬D(x/t). In the case of (1) 
Y entails the sentence B. Let us now consider the case (2). Suppose that Y 
does not entail the sentence ¬∃x Dx. So there is a normal interpretation I 
such that I  is a model of Y and the sentence ∃x Dx is true in I. By 
assumption we have ∃xDx ╠ S(Dx). So at least one sentence of the form 
D(x/t) is true in I. But Y entails each sentence of the form ¬D(x/t). 
Therefore each such sentence is true in I. We arrive at a contradiction. 
So Y entails the sentence ¬∃x Dx. This sentence, however, is equal to ¬B. 
Thus we may say that each μ(Φ)-set entails the sentence B or the 
sentence ¬B. 

 ■ 

 Next we shall prove  

THEOREM 5. If the following condition holds: 
(∃) for each sentential function Ax with exactly one free 
variable, ∃x Ax ╠ S(Ax)  
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then each simple yes-no question is reducible to some set of atomic 
yes-no questions.  

 PROOF: Let ? {A, ¬A} be a simple yes-no question. It is obvious that 
there exists a simple yes-no question ? {B, ¬B} such that B is in prenex 
normal form and A ╞ B as well as B ╞ A. By Lemma 3 the question 
? {B, ¬B} is reducible to some set of atomic yes-no questions; so by 
Lemma 2 the question ? {A, ¬A} is reducible to some set of atomic 
yes-no questions.  

 ■ 

 Now we need the following 

THEOREM 6. Each safe question is reducible to some set of 
questions made up of simple yes-no questions. 

 The proof of Theorem 6 is similar to that of Theorem 2. For details, 
see Wiśniewski (1994). By means of Theorem 5 and Theorem 6 we can 
prove  

THEOREM 7. If the following condition holds: 

(ω) for each sentential function Ax with exactly one free 
variable, ∃x Ax╠ S(Ax)  

then each safe question is reducible to some set of atomic yes-no 
questions.  

 PROOF: Let Q be a safe question. By Theorem 6 Q is reducible to 
some set of simple yes-no questions. Let Φ be an arbitrary but fixed set 
of simple yes-no questions such that Q is reducible to Φ. By Theorem 5 
each question in Φ is reducible to some set of atomic yes-no questions. 
Let us then pair each question in Φ with exactly one (arbitrary but fixed) 
set of atomic yes-no questions to which the considered question in Φ is 
reducible. Let Ψ be the union of sets of atomic yes-no questions 
associated with the questions of Φ in the above manner. The set Ψ is a 
homogenous set of atomic yes-no questions. Then we proceed as in the 
proof of Theorem 3.  

 ■ 

Thus, if the condition (ω) holds, then each safe question is reducible to 
some set of atomic yes-no questions. But it is not the case that the 
condition (ω) holds for any language of the considered kind. So 
designing the semantics in such a way that the condition (ω) would be 
met is the price which, if paid, gives us the unrestricted reducibility of 
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safe questions to homogenous sets of atomic yes-no questions. And it 
may be a high price: as a by-product we may obtain the lack of 
compactness of entailment as well as of mc-entailment.7 
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