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REDUCIBILITY OF QUESTIONS TO SETS OF QUESTIONS:
SOME FEASIBILITY RESULTS

PIOTR LESNIEWSKI AND ANDRZEJ WISNIEWSKI

Abstract

Two concepts of reducibility of questions to sets of questions are
analyzed. Some theorems about reducibility of proper questions
to sets of simple yes-no questions, and to sets of atomic yes-no
questions are proved. Relations between the results concerning re-
ducibility and inferential erotetic logic are discussed.

1. Preliminary Remarks

The idea of reducibility of a (principal or “main”) question to a set of (opera-
tive or “small”’) questions plays an important role both in inferential erotetic
logic' (IEL for short) and in the “Interrogative Model of Inquiry” developed
by Hintikka and his associates.” As far as IEL is concerned, reducibility can
be approached from two distinct perspectives. First, one can use the concept
of a complete erotetic search scenario® and say that the principal question of
a scenario is reducible to a set of queries of the scenario. Since the consecu-
tive queries of a path of a scenario are implied (in the sense of IEL) by some
questions and declarative sentences which occur earlier on the path, and the
latter can include answers to previous queries, this concept of reducibility
may be called dynamic. Second, we also have the static or “flat” case. Here
the form of an operative question is not dependent upon the previously re-
ceived answers to other operative questions. Moreover, even the form of
the answers received to operative questions is not crucial: if all of them are
answered in some way or another, an answer to the principal question is
forthcoming.

! For inferential erotetic logic see, e.g. Wisniewski (1995a), (1996). For a general intro-
duction, see also the paper ‘Questions and Inferences’ (this volume).

? For the Interrogative Model of Inquiry see Hintikka (1999).

3 Cf. Wisniewski (2003). Cf. also ‘Questions and Inferences’ (this volume).
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In Wisniewski (1993) a semantic concept of reducibility of a question to
a non-empty set of questions is defined (cf. also Wisniewski 1994b, 1995a,
1995b, and forthcoming). A more general concept, “a question () is re-
ducible to a non-empty set of questions ® on the basis of a set of declar-
ative sentences X7, was defined in Wisniewski (1994b), but analyzed by
Lesniewski (1997, 2000). In this paper we discuss these concepts of re-
ducibility.

2. Reducibility of Questions to Sets of Questions: Intuitions

Suppose that we have a question () on the one hand, and a non-empty set of
questions ¢ on the other. Assume (and this is a rather strong assumption)
that both () and the questions of ® have well-defined sets of direct answers;
by a direct answer to a question we mean a possible and just-sufficient an-
swer. A direct answer can be true or false. There are questions which have
true direct answers, but there are also questions which do not have such an-
swers. If a question has at least one true direct answer, the question is called
sound; otherwise it is called unsound. Thus () is either sound or unsound,
and similarly for the questions in ®. The first necessary condition of re-
duciblity is the following:

(C1) (mutual soundness) If () is reducible to ®, then () is sound if and
only if each question in ® is sound.

Note that condition (C;) does not presuppose that () and the questions in ®
are sound. We only require that if (Q is sound, then all the questions in $ are
sound, and conversely.

The second necessary condition is:

(C2) (efficacy) If () is reducible to ®, then each set made up of direct
answers to the questions of ® which contains exactly one direct answer to
each question of ¢ entails at least one direct answer to ().

The third necessary condition is:

(Cs) (relative simplicity) If () is reducible to ®, then no question in ® has
more direct answers than ().

Some simple examples can help to clarify matters here. It is easily seen that
conditions (C1), (Cs) and (C3) are fulfilled by the following question:

(2.1) Is John a teacher or a scholar?
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with respect to the set made up of the questions:

(2.2) Is John a teacher?
(2.3) Is John a scholar?

The situation is analogous when we take into consideration the question:

(2.4) Who is John: a teacher, a scholar, or a clerk?

and the following set of questions:

(2.2) Is John a teacher?
(2.3) Is John a scholar?
(2.5) Is John a clerk?

provided that the sentence “John is not a teacher and he is neither a scholar
nor a clerk” is a direct answer to (2.4)*.

When the generalized concept of reducibility is concerned, the conditions
(C1) and (Cy) are modified (cf. below) and we may say that question (2.4)
is reducible on the basis of:

(2.6) John is a teacher, or a scholar, or a clerk.

to any two-element set of questions made up of the questions (2.2), (2.3) or
(2:5)3

Although the natural-language examples presented above are not very im-
pressive, the analyzed concepts of reducibility have some importance to IEL
and to the logic of questions in general. Yet, in order to see this we have to
define reducibility in exact terms, and this, in turn, requires some preparatory
steps.

3. The logical basis

What we need is a formalized language L which has both declarative for-
mulas (d-wifs for short) and questions as meaningful expressions, where
questions are not declarative formulas. For the purposes of this paper we
assume that L is a language which results from a first-order language L by

41f we assume otherwise, condition (Cs) will not be fulfilled.

3 Now we do not have to assume that “John is not a teacher and he is neither a scholar
nor a clerk™ is a direct answer to the question.
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enriching it with questions. Yet, we do not forejudge how the questions of
L look; we only stipulate some general conditions on the set of questions
of the language (cf. below). By terms and d-wffs of L. we mean the terms
and well-formed formulas of L1, respectively, and similarly for predicates
as well as for function symbols and individual constants (if there are any).
A sentence is a d-wif without free variable(s); freedom and bondage of vari-
ables are defined in the usual manner. We will use the letters A, B, C, D,
possibly with subscripts, as metalinguistic variables for d-wffs, and the let-
ters X, Y, Z, possibly with subscripts, as metalinguistic variables for sets
of d-wffs. The letters @, @1, ... will be used as metalinguistic variables for
questions, whereas the Greek upper-case letters ®, W, ... will refer to sets of
questions.

In the metatheory of L we assume the von Neumann-Godel-Bernays ver-
sion of set theory; we adopt here the standard set-theoretical terminology
and notation. The expression “iff”” abbreviates “if and only if.”

We impose the following conditions on the set of questions of L:

(*) each question has at least two direct answers; these answers are d-wffs
of L.

Intuitively, direct answers are the possible and just-sufficient answers to a
question. By saying that a question “has” at least two direct answers we
mean that there exists an at least two-element set of direct answers to the
question. The set of direct answers to a question () will be referred to as d@.

(**) each direct answer is a sentence, that is, a d-wff without free vari-
able(s).

(***) each finite and at least two-element set of sentences is the set of
direct answers to some question.

Conditions (*), (**), and (***) are the standard conditions stipulated by IEL.
Note that condition (***) yields that for each sentence A there exists a ques-
tion (we shall call it a simple yes-no question) which has A and — A as the
only direct answers; these answers are called the affirmative answer and the
negative answer, respectively.

In order to make our analysis less trivial we shall also stipulate the follow-

ing:

(#) there are questions of L which have infinite sets of direct answers.
(#4#) the set of direct answers to a question of L is countable (i.e. either
finite or infinite but denumerable).
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(###) the set of questions of L is countable.®

A question () is said to be finite iff the set of direct answers to (Q is finite;
otherwise () is an infinite question.

The semantics for L is based on a model-theoretical semantics for L. By
an interpretation of L we mean an interpretation of L1, that is, an ordered
pair M =<M, f>, where U is a non-empty set (the universe) and f is the
interpretation function defined on the set of non-logical constants of L. Of
course, there are many interpretations of L. For generality, we assume that
the class of all interpretations of L includes a non-empty subclass (not nec-
essarily a proper subclass) of normal interpretations. Normal interpretations
are supposed to satisfy some additional conditions; we shall not discuss it
here in detail, however (cf. Wisniewski 1995a, pp. 104-105).

The concepts of satisfaction and of truth of a d-wff in an interpretation are
defined in the standard manner. If a d-wff A is true in an interpretation M,
we write M E A. By a model of a set of d-wffs we mean an interpretation in
which all the d-wffs of this set are true. If an interpretation M is a model of
a set of d-wffs X, we write M E X.

Note that the concept of truth does not apply to questions of L. In the case
of questions, however, we use the concept of soundness.

Definition 1: A question @) is said to be sound in an interpretation M iff at
least one direct answer to () is true in M.

We need two concepts of entailment: the standard concept of (single-
conclusion) entailment and the concept of multiple-conclusion entailment
(mc-entailment for short). Multiple-conclusion entailment is a relation be-
tween sets of d-wffs.” In what follows by normal interpretations we mean
normal interpretations of L.

Definition 2: A set of d-wffs X entails a d-wff A (in symbols: X E A) iff A
is true in each normal interpretation in which all the d-wffs in X are true.

Note that when the class of normal interpretations is equal to the class
of all interpretations, entailment becomes logical entailment determined by
Classical Logic. If normal interpretations form a proper subclass of the class

®Thus each set of questions of L is countable and by (##) the union of sets of direct
answers of a family of questions is countable. We impose this restriction because in what
follows we will make use of the Axiom of Choice and we want to apply it to countable sets
only.

7 Cf. Shoesmith and Smiley (1978).
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of all interpretations, everything that is entailed according to Classical Logic
1s still entailed in view of Definition 2.

Definition 3: A set of d-wffs X multiple-conclusion entails a set of d-wffs Y
(symbolically: X |=Y ) iff the following condition holds:
(e) for each normal interpretation M: if all the d-wffs in X are true
in M, then at least one d-wff in Y is true in M.

In other words, X mc-entails Y if and only if it is impossible that no d-wff
in Y is true if X consists of truths, that is, there is no normal interpretation
of the language in which all the d-wffs in X are true and all the d-wffs in Y
are not true.

Note that the above concept is defined in terms of normal interpretations
(again, when the class of normal interpretations is equal to the class of all
interpretations, mc-entailment becomes mc-entailment determined by Clas-
sical Logic; the latter is always retained). Note also that it can happen that
a set of d-wffs X mc-entails a set of d-wffs Y, but X does not entail any
d-wff in Y. For example, the singleton set { A V B}, where A, B are distinct
atomic sentences, mc-entails the set { A, B}, but neither A nor B is entailed
by the set {A VvV B}. Of course, entailment can be defined in terms of mc-
entailment, as multiple-conclusion entailment of a singleton set. Moreover,
if Y is a finite set of sentences, then X mc-entails Y if X entails a disjunc-
tion of all the elements of Y. Yet, in the general case mc-entailment cannot
be defined in terms of (single-conclusion) entailment. Moreover, entailment
and mc-entailment need not be compact. The relation |~ is said to be com-
pact iff whenever X |= Y, then there exist: a finite subset X; of X and a
finite subset Y7 of Y such that X; |= Y;.

For conciseness, we write A |= Y instead of {A} |= Y, and X |= A
instead of X |= {A}.

Further semantic concepts pertaining to the language L will be introduced
when needed.

4. Reducibility of Questions to Sets of Questions: Definition and Some Re-
sults

Let ® be a non-empty set of questions. By a y(®)-ser we mean a set made
up of direct answers to the questions of the set ® which contains exactly one
direct answer to each question of ®. (Recall that the set of questions of L is
countable). Let us designate by | d@ | the cardinal number of the set dQ.

We define the concept of reducibility of a question to a non-empty set of
questions as follows (cf. Wisniewski 1993, 1994b):
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Definition 4: A question () is reducible to a non-empty set of questions ® (in
symbols: R (Q, ®)) iff

(i) for each A € dQ and for each question Q; € ® : A |= dQ;; and

(ii) for each p(®)-set Y there is B € dQ) such that Y |= B; and

(iii) for each Q; € @ :| d@; | < | d@ |.

It can easily be seen that reducibility defined in the above manner satisfies
the conditions specified in Section 2. In particular, the following holds:

Corollary 1: If R (Q, ®), then for each normal interpretation M: (Q is sound
in M iff each question in ® is sound in M.

Following Belnap®, by a presupposition of a question () we mean a d-wff
which is entailed by each direct answer to (). The set of presuppositions of
a question () will be referred to as Pres().

Corollary 2: If R (Q, ®), then for each Q; € ® : Pres); C PresQ).

Thus the questions in ® do not involve “new” presuppositions.
Reducibility is “transitive” in the following sense:

Corollary 3: Let © be a non-empty set of questions. Let v be a sequence
of non-empty sets of questions such that each question of ® is reducible to
exactly one element of v and for each set of questions 1" of v there exists
a question of ® which is reducible to the set I'. Then if a question Q) is
reducible to ®, then () is also reducible to the set of questions which is the
union of all the sets which are elements of the sequence v.

For proof see Wisniewski (1994b).

According to Belnap, a question is safe if it must have a true direct answer,
and risky otherwise.” By using the concept of mc-entailment we can express
this as follows ({) stands here for the empty set):

Definition 5: A question Q is safe iff ) |= dQ, and risky otherwise.

We have:

8 Cf. Belnap and Steel (1976).

? That is, a question Q is safe iff for each interpretation of the language, at least one direct
answer to () is true in this interpretation; otherwise () is risky. We explicate Belnap’s idea by
Definition 5.
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Corollary 4: If R (Q, ®), then:
(i) Q is safe iff each question in ® is safe;
(ii) Q) is risky iff at least one question in ® is risky.

We say that a question () implies a question (), iff the following conditions
hold: (i) for each A € dQ : A |= dQ, and (ii) for each B € dQ; there
exists a non-empty proper subset Y of d() such that B |~ Y. (This concept
of implication between questions is borrowed from IEL; for intuitions see,
e.g. Wisniewski 1994a, or Wisniewski 1995a). By a simple yes-no question
we mean a question whose set of direct answers consists of a sentence and
its negation, exclusively. Simple yes-no questions are safe, but there are safe
questions which are not simple yes-no questions. Yet, the following general
theorem holds:

Theorem 1: (Wisniewski 1995a) A question Q) is safe iff QQ is reducible to
some set of simple yes-no questions which are implied by ().

One can also prove that if entailment in a language is compact (it need not
be, however, since Definition 2 refers to normal interpretations), then each
safe question is reducible to a finite set of implied simple yes-no questions.
Of course, each finite safe question is reducible to a finite set of implied
simple yes-no questions.

Simple yes-no questions are customarily regarded as the epistemologically
prior questions. Theorem 1 shows that each safe question is reducible to a
set of simple yes-no questions. But Corollary 3 yields that risky questions
cannot be reduced that way. Yet, there are results which show that, given that
certain conditions are met, a risky question can be reduced to a set made up
of implied binary questions, that is, questions which have exactly two direct
answers (for details see Wisniewski 1995a). Moreover, there are cases in
which such a set consists of simple yes-no questions and exactly one risky
question (cf. Wisniewski 1994b).

5. Generalized Reducibility of Questions

Generalized reducibility introduces a third element into the picture: a set
of declarative sentences X, which serves as a basis for the reduction. In
particular, X may consist of the presuppositions of a question to be reduced,
or of a single presupposition of the question which warrants the existence of
a true direct answer to it, or of items of knowledge by means of which we
try to resolve a complex problem by reducing it to more simple issues.

The generalized concept of reducibility is defined as follows (cf. Wisniew-
ski 1994b):
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Definition 6: A question () is reducible to a non-empty set of questions ¢ on
the basis of a set of d-wffs X (in symbols: [R](Q, X, ®)) iff
(i)  foreach A € dQ and for each question Q; € ® : XU{A} |= dQ;;
and
(ii)  for each pu(®)-set Y there is B € dQ such that X UY E B, but
XnonkFE B; and
(iii) foreach @Q; € @, | dQ; | <|dQ |.

Note that the negative part of clause (i1) excludes that the relevant direct
answer to () is entailed by X alone; the corresponding p(®)-set is always
needed.

The properties of the generalized reducibility are analyzed in (LeSniewski
1997, 2000). Let us only mention a few of them.

Corollary 5: Let [R](Q, X, ®). Then for each normal interpretation M such

that M is a model of X : Q is sound in M iff each question in ® is sound in
M.

Generalized reducibility is “transitive” in the following sense:

Theorem 2: (Lesniewski 1997) Let [R](Q, X, ®). Let F be a set of sets of
questions which fulfills the following conditions:
(i)  for each question Q; € P there is a set of questions ¥V € F such
that [R](Q:, X, V), and
(ii)  for each set of questions W € F there is a question QQ; € ® such
that [R](Q;, X, ).
Then [R](Q, X, Z), where = is the union of all the sets of questions which
belong to F.

Proof. Let A be a direct answer to ). Since [R](Q, X, ®), then for each
question ; € ® we have X U {A} |= dQ;. If M is a normal interpretation
which is a model of X U {A}, then for each ); € ® there exists B €
d@; such that M E B. Thus there is a u(®)-set Z such that M F Z. By
assumption (ii) and Corollary 5 we get that for each (); € = there is C' €
d@; such that M = C. Therefore X U {A} |= dQ; for any A € dQ and
every (J; € Z.

Let Z be a u(Z)-set. Since = is the union of all the sets which are el-
ements of F, then, by assumption (i), there exists a u(®)-set Y such that
each normal interpretation which is a model of Z is also a model of Y. But
since [R](@, X, ®), there is A € d@ such that Y U X F A, but XnonF A.
Therefore Z U X F A and XnonkF A.

It is obvious that clause (ii1) of Definition 6 is fulfilled as well. []
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In order to proceed we have to introduce some supplementary concepts
borrowed from Wisniewski (1995a).

Each question has a set of presuppositions (cf. above). Yet, it is possible
that all the presuppositions of a certain question are true, but nevertheless
the question is not sound. If this cannot happen to a given question, we say
that the question is normal. More formally, we have:

Definition 7: A question @ is normal iff Pres@ |~ d@.
Regularity is a special case of normality.

Definition 8: A question @) is regular iff there exists A € PresQ such that

A= do.

Contrary to appearances, these concepts are not equivalent. Since mc-entail-
ment need not be compact (recall that we consider here an arbitrary language
from a class of formalized languages!), normality is not tantamount to reg-
ularity. The basic intuition which underlies the concept of regularity is as
follows: there is at least one single presupposition of a question whose truth
guarantees the existence of a true direct answer to the question. Such a pre-
supposition is called a prospective presupposition.

Definition 9: A d-wff A is a prospective presupposition of a question @ iff
(i) A € PresQ, and (ii) A |= dQ.

Thus a regular question is a question which has a prospective presupposi-
tion (note that prospective presuppositions of a question entail one another).
The next concept is self-rhetoricity (“rhetoricity for logical reasons™).

Definition 10: A question () is self-rhetorical iff PresQ) F A for some A €
dQ.

Thus a question is self-rhetorical if and only if it can be answered by means
of its presuppositions only.

Proper questions are defined by:
Definition 11: A question () is proper iff () is normal and not self-rhetorical.
Thus the set of presuppositions of a proper question mc-entails the set of

direct answers to the question (and hence the truth of all the presuppositions
guarantees the existence of a true direct answer), but the presuppositions do
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not entail any single direct answer to the question (hence the question cannot
be answered by means of its presuppositions only).

Proper questions seem to play crucial role in an inquiry, since they express
well-defined problems. On the other hand, simple yes-no questions are the
epistemologically prior questions. The following theorems are important in
this context.

Theorem 3: (LeSniewski 1997) If Q) is a proper and regular question, then
Q is reducible on the basis of any of its prospective presuppositions to a set
of questions made up of simple yes-no questions.

Theorem 4: (LeSniewski 1997) Let () be a proper question. If any of the
following conditions hold:

(1) @ is a finite question,

(ii)  entailment is compact
then () is reducible on the basis of any of its prospective presuppositions to
a finite set of questions made up of simple yes-no questions.

In what follows we shall prove some stronger theorems which have The-
orems 3 and 4 as immediate consequences. Surprisingly enough, the proofs
of the new theorems are more concise than the original proofs of Theorems 3
and 4.

6. Main Lemma

First, we shall introduce the concepts of evocation and erotetic implication.
These concepts are of basic importance to IEL. In particular, validity of
erotetic inferences is defined by means of evocation and erotetic implica-
tion.'”

Definition 12: A set of d-wffs X evokes a question Q) (in symbols: E(X,Q))
iff

1@ Generally speaking, erotetic inferences have questions as conclusions, whereas the
premises consist of declarative sentences and/or (single) questions. There are erotetic in-
ferences of (at least) two kinds. An erotetic inference of the first kind may be identified
with an ordered pair <X, 2>, where X is a finite and non-empty set of d-wffs and Q is a
question. An erotetic inference of the second kind can be identified with an ordered triple
<@, X, Q1> , where @, Q1 are questions and X is a finite (possibly empty) set of d-wifs.
IEL defines validity of erotetic inferences in terms of evocation and erotetic implication, re-
spectively. For the underlying intuitions, see e.g. Wisniewski (1995a), (1996), or the paper
‘Questions and Inferences’ (this volume).
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(i) X | dQ; and
(ii) foreach A € dQ : Xnon|= A.

Definition 13: A question (Q implies a question (1 on the basis of a set of
d-wffs X (in symbols: Im(Q, X, Q1)) iff
(i)  foreach A € dQ : X U{A} | dQ.; and
(ii)  foreach B € dQ there exists a non-empty proper subset Y of d@)
such that X U{B} | Y.

Now we shall prove:

Lemma 1: If E(X,Q), then Q is reducible on the basis of X to some set
of simple yes-no questions ® such that for each QQ; € ®, Im(Q, X, Q;); if
moreover () is a finite question or entailment is compact, the set P is finite.

Proof. Let E(X, Q). Recall that sets of direct answers to questions are
countable. Let v = Aq, As, ... be a fixed sequence without repetitions of
direct answers to () such that each direct answer to () is an element of /. Let
us then define the following set of simple yes-no questions:

®={Q :dQ) = {4;,~A;}, where i > 1}

In other words, ® consists of the simple yes-no questions based on the ele-
ments of the sequence v, but with the exception of the question based on the
first element of v. Thus the affirmative answers to the questions of ® are also
direct answers to (). It is clear that the clauses (i) and (iii) of Definition 6
are fulfilled by @ with respect to . Let Y be a p(®)-set. There are two
possibilities: (a) Y contains some affirmative answer(s) to the questions of
®; (b) Y is made up of the negative answers to the questions of ®. If the
possibility (a) holds, then — since the affirmative answers to the questions
of ® are also direct answers to ( — the set Y U X entails at least one direct
answer to (). Since E(X, ()), this answer is not entailed by X alone. Sup-
pose that the possibility (b) takes place. Since E(X, @), then X |= d@). It
follows that X UY & A;. But since E(X, @), we have XnonE A;. So the
clause (ii) of Definition 6 is fulfilled as well. Therefore [R](Q, X, ®).

Since P is a set of simple yes-no questions, then the clause (i) of Defini-
tion 13 is satisfied. Assume that ); is an arbitrary but fixed element of ®.
Thus dQ; = {A;,—~A;}. We have X U {A4;} |= A;. But A; € dQ and {4;}
is a non-empty proper subset of d@). Now consider the answer —A4; to ;.
Since E(X, @), then X |= dQ. Therefore X U {—A4;} = dQ — {4;}. But
d@Q — {A;} is a non-empty proper subset of d() (recall that each question
has at least two direct answers). Thus the second clause of Definition 13 is
fulfilled as well. Hence for each Q; € ® we have Im(Q, X, Q;).
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It is obvious that the set ® constructed in the above manner is finite if the
initial question () is finite.

Assume that entailment is compact. If entailment is compact, so is mc-
entailment (cf. WisSniewski 1995a, Corollary 4.5). Since E(X, Q), then
X |= dQ and for each A € dQ, Xnonk A. So by compactness X mc-
entails some at least two-element finite subset of d(). We fix a certain at
least two-element finite subset of d@ which is mc-entailed by X and then
proceed as above, []

According to Lemma 1, an evoked question is always reducible on the ba-
sis of the evoking set to a set of simple yes-no questions which are, in turn,
implied by the evoked question on the basis of the evoking set. This result
has some importance to IEL: we can say that each question which is the con-
clusion of a valid erotetic inference (of the first kind) can be answered by
answering simple yes-no questions which are conclusions of valid erotetic
inferences (of the second kind); the declarative premises involved belong to
the evoking set. This is not the only feasibility result available, however.
For example, one can prove that if entailment is compact, then each ques-
tion which is evoked by a set of d-wffs X is reducible on the basis of X
to a finite set of questions W made up of simple yes-no questions such that
each question in W is both strongly implied by (Q on the basis of X and is
evoked by X (strong erotetic implication is a special case of erotetic impli-
cation: the clause (ii) of Definition 13 is supplemented with the condition
“Xnon|= Y?”). For proof, see Lesniewski (1997). One can also prove that
if entailment is compact and () is evoked by X, then there exists a finite
sequence ¢ of simple yes-no questions such that: (a) each question of ¢ is
both evoked by X and strongly implied by ) on the basis of X ; and (b) each
set made up of direct answers to the questions of ¢ which contains exactly
one direct answer to each question of ¢ entails along with X a certain direct
answer to (); and (c) each non-logical constant that occurs in a direct answer
to a question of ¢ occurs in a certain direct answer to (). For proof, see
Wisniewski (1995a). The above theorem can easily be reformulated in terms
of the generalized reducibility of questions. Moreover, the compactness as-
sumption is dispensable when @ is a finite question.

1. Reducibility of Proper Questions
Let us now turn back to reducibility of proper questions. We shall prove:
Theorem 5: Each proper question () is reducible on the basis of the set of

presuppositions PresQ) of Q) to a set of simple yes-no questions which are
implied by () on the basis of PresQ.
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Proof. 1t follows from Lemma 1. It suffices to observe that if () is proper,
then E(Pres@, Q). [

The following strengthen Theorems 3 and 4 of LeSniewski (see Section 5):

Theorem 6: Let () be a proper and regular question. Then for each prospec-
tive presupposition A of (), the question Q) is reducible on the basis of A to
a set of questions made up of simple yes-no questions which are implied by
() on the basis of A.

Proof. Again, by Lemma 1. It suffices to observe that regular questions have
prospective presuppositions and that for each prospective presupposition A
of a proper question ) we have E(A, Q). [J

Theorem 7: Let () be a proper question. If any of the following conditions
holds:

(iii) @ is a finite question,

(iv)  entailment is compact
then () is reducible on the basis of any prospective presupposition A of ()
to a finite set of questions made up of simple yes-no questions which are
implied by () on the basis of A.

Proof. 1t follows from Lemma 1. It suffices to observe that if () is a proper
finite question, then () is also regular (for example, a disjunction of all the
direct answers to () is a prospective presupposition of (), and that if entail-
ment is compact, so is mc-entailment and therefore each proper question is
regular and thus has a prospective presupposition. Hence in both cases there
exists a prospective presupposition A of () such that E(A, @). Yet, all the
prospective presuppositions of a question are equivalent (i.e. have the same
normal interpretations as models). []

Proper questions express well-defined problems. Thus Theorems 5, 6 and
7 show that each problem expressed by a proper question which has true pre-
suppositions is, in principle, solvable by resolving some problems expressed
by implied simple yes-no questions. From the standpoint of IEL, however,
the importance of Theorems 6 and 7 is even greater. The following holds:

Corollary 6: If ) is a regular question and E( X, Q), then for each prospec-
tive presupposition A of Q: (i) X F A; and (ii) E(A, Q).

Thus each valid erotetic inference of the first kind which has a regular ques-
tion as the conclusion can be split into a standard valid inference which
leads to a prospective presupposition of the question, and a valid erotetic
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inference which has the prospective presupposition as the premise. If the
considered question is proper, then by Theorem 6 this question can be an-
swered by answering some simple yes-no questions which are conclusions
of valid erotetic inferences of the second kind. According to Theorem 7, the
same holds when the initial proper question is finite (recall that each finite
question 1s regular) and/or entailment in a language is compact.

8. Reducibility to Sets of Atomic Yes-No Questions

In this section we assume that the vocabulary of the considered language
contains some closed terms. By an atomic yes-no question we mean a ques-
tion whose set of direct answers consists of an atomic sentence and its nega-
tion, exclusively. Needless to say, atomic yes-no questions are the logically
prior questions.

We will make use of the following lemmata:

Lemma 2: If (Q is reducible on the basis of X to a set of simple yes-no ques-
tions ®, and WV is a set of atomic yes-no questions such that each question in
O is reducible to some subset of U, then () is reducible on the basis of X to
the set of atomic yes-no questions V.

Proof. It is clear that the clauses (i) and (iii) of Definition 6 are fulfilled by
W with respect to (). Let Y be a pu(W)-set. Since each question of @ is re-
ducible to some subset of W, then Y entails a certain direct answer to each
question of ®. So there exists a p(®)-set, say, Z, such that each normal in-
terpretation which is a model of Y is also a model of Z. On the other hand,
() is reducible on the basis of X to ®. Therefore for some direct answer A
to ) we have Y U X F A and XnonF A. So the clause (ii) of Definition 6
is fulfilled as well. []

By a quantifier-free question we mean a question whose direct answers
contain no occurrences of quantifiers.

Lemma 3: (Wisniewski (forthcoming)) Each quantifier-free simple yes-no
question is reducible to some finite set of atomic yes-no questions.

The following hold:

Theorem 8: If Q) is a quantifier-free proper question, then () is reducible
on the basis of the set of presuppositions of () to some set of atomic yes-no
questions.
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Proof. By Theorem 5, Lemma 3, and Lemma 2. (]

Theorem 9: If Q) is a quantifier-free regular and proper question, then () is
reducible on the basis of any of its prospective presuppositions to some set
of atomic yes-no questions.

Proof. By Theorem 6, Lemma 3, and Lemma 2. []

Theorem 10: Let () be a quantifier-free proper question. If any of the fol-
lowing conditions holds:

(i) Q is a finite question,

(ii)  entailment is compact,
then Q) is reducible on the basis of any of its prospective presuppositions to
some finite set of atomic yes-no questions.

Proof. By Theorem 7, Lemma 2 and Lemma 3. [

But what about proper questions which are not quantifier-free?

By a sentential function we will mean a d-wff with free variable(s). As-
sume that Az is a sentential function of L with = as the only free variable.
Let S(Ax) designate the set of all the sentences which result from the senten-
tial function Ax by proper substitution of closed terms for the free variable
%

Lemma 4: (Wisniewski (forthcoming)) If the following condition holds.
(w) for each sentential function Ax with exactly one free variable,
drx Az |= S(Ax)
then each simple yes-no question is reducible to some set of atomic yes-no
questions.

By using Lemma 4 instead of Lemma 3 we get:

Theorem 11: If the following condition holds:
(w)  for each sentential function Ax with exactly one free variable,
Jx Az |= S(Ax)
then each proper question () is reducible on the basis of the set of presuppo-
sitions of Q) to some set of atomic yes-no questions.

Theorem 12: If the following condition holds:
(w)  for each sentential function Az with exactly one free variable,
dz Az |= S(Ax)
then each proper and regular question @) is reducible on the basis of any of
Ils prospective presuppositions to some set of atomic yes-no questions.
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Note that the above theorems do not speak about reducibility to implied
atomic yes-no questions. Note also that if condition (w) holds, then neither
entailment nor mc-entailment is compact.

9. Final Remarks

The considerations presented in this paper pertained to first-order languages
enriched with questions and supplemented with a model-theoretical seman-
tics. Yet, the basic auxiliary notion, that is, mc-entailment can be also de-
fined within a more general framework and for a wider class of languages
(see Shoesmith and Smiley 1978, and Wisniewski 1996). Note, however, that
the proof of Lemma 1 does not presuppose much about multiple-conclusion
entailment. As a matter of fact, only the following properties of mc-entail-
ment are assumed:

(8.1) XU{A} =Y U{A},
82) IfX Y U{A}, then X U{-A} Y.
(83) X |={A,—~A}, where A is a sentence.

Thus the analogues of Lemma 1 are valid for those formalized languages
which: (a) have both declarative formulas and questions as meaningful ex-
pressions, (b) fulfill the conditions (*), (*¥*), (***), (#), (##) and (###) spec-
ified in Section 3, and (c) are supplemented with a semantics which validate
(8.1), (8.2), and (8.3), and in which compactness of entailment yields com-
pactness of mc-entailment. The same holds for the analogues of Theorems
5 and 6. Yet, Theorem 7 relies upon stronger assumptions. As far as finite
questions are concerned, it is assumed that for each finite set of sentences
there is a d-wff which is true iff at least one sentence in the initial set is
true. Moreover, the compactness assumption works only if for each finite
and non-empty set of sentences there is a single d-wff which is true iff all the
elements of the set are simultaneously true. The syntax of a language need
not be rich enough to enable this, however.

Multiple-conclusion logic generalizes the concept of inference by intro-
ducing inferences with many conclusions into the picture. These conclu-
sions, however, function “disjunctively”: they set out the field within which
the truth must lie if the premises are all true. As we have seen, the con-
cept of multiple-conclusion entailment has many applications in the logic
of questions. On the other hand, it seems natural to generalize the con-
cept of erotetic inference by introducing multiple-conclusion erotetic infer-
ences. A multiple-conclusion erotetic inference has a single question as an
erotetic premise (you can think of it as of the “principal” or “main” ques-
tion), possibly some d-wffs as declarative premises and a set of questions
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as a conclusion (intuitively, these are the “small” or “operative” questions
by means of which the principal question can be answered). The concept of
the generalized reducibility of questions analyzed above can be regarded as
a serious candidate for defining validity of multiple-conclusion erotetic in-
ferences. Observe that if this solution were accepted, the conclusions would
function “conjunctively”, since these are the u(®)-sets which enable us to
answer the principal question. But in order to receive a p(®)-set one has to
answer all the questions in ®. This may seem doubtful.

We are not going to resolve the problem of validity of multiple-conclusion
erotetic inferences in this paper, however. The second author tends to think
that everything that can be said in terms of multiple-conclusion erotetic in-
ferences can be expressed in a more efficient way by means of erotetic search
scenarios. This, however, is another story.
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