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SOME FOUNDATIONAL CONCEPTS
OF EROTETIC SEMANTICS"

The aim of this paper is to define some semantical concepts which may be
useful in the analysis of questions and questioning. Some of them have been
already introduced elsewhere (see the papers WiSniewski 1989, 1991,
1994a, 1994b, and Buszkowski 1989); we shall give here more extended
motivation for the proposed definitions. Some concepts we introduce are in
principle borrowed from Belnap’s erotetic semantics (cf. Belnap and Steel
1976, Chapter 3); yet, contrary to Belnap, in our analysis we make use of
the concept of multiple-conclusion entailment. In general, this concept is
one of the main tools applied throughout this paper.

We shall be considering here a class of formalized languages whose
meaningful expressions are either declaratives or questions; a language of
the analyzed kind consists of the assertoric part being a standard first order
language with identity and the erotetic part with questions as the key
expressions. Yet, first order languages can be supplemented with questions
in many ways and it is not the case that the concepts we are going to
introduce are applicable regardless of the way of constructing a question-
and-answer system. So let us start with some general information about the
existing logical theories of questions and answers.

1. Questions and answers
1.1. Questions: reductionism vs. non-reductionism
As we read in one of the very few monographs on the logic of questions,

“Different authors developing logical theories of questions accept different
answers to the question “What is a question?”” (Kubifski 1971, p. 97). This
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statement, written down more than twenty five years ago, still gives us a
realistic description of the situation within erotetic logic.

To speak generally, the approaches to questions proposed by different
logicians and formal linguists can be divided into reductionist and non-
reductionist ones. Inside the reductionist approach, in turn, the radical and
moderate standpoints can be distinguished.

1.1.1. Radical reductionism. According to the radical view, questions are
not linguistic entities. The reduction of questions to sets of sentences or
propositions is most often adopted here. Sometimes any set of sentences is
allowed to be a question, but usually questions are identified with sets of
answers of some distinguished category. Stahl (cf., e.g., Stahl 1962)
identifies questions with sets of their sufficient answers; these answers are
declarative formulas of a strictly defined kind. Hamblin (cf. Hamblin 1973)
identifies a question with the set of its possible answers, whereas Karttunen
(cf. Karttunen 1978) identifies questions with sets of their true answers; in
both cases the relevant answers are propositions in the sense of some
intensional logic. Questions are also identified with functions defined on
possible worlds; the set of values of a function of this kind consists of truth-
values, or of sets of individuals, or of sets of sets of individuals (cf., e.g.,
Tichy 1978, and Materna 1981). Also in this case some intensional logic
serves as the basis of analysis. An analysis of questions and interrogatives
in terms of (some versions of) Montague intensional logic is to be found
e.g. in Groenendijk and Stokhof (1984). Some linguists developed the so-
called categorial approach to questions: according to this view, questions
are to be considered as functions from categorial answers to propositions
(cf., e.g., Hausser 1983); a categorial answer may be a full sentence, but
may also be a part of it, e.g. a noun phrase, an adverb, etc. There are
philosophers of language who tend to identify questions with speech acts
rather than with expressions. Let us stress, however, that in all of the above
cases a distinction is made between an interrogative (or an interrogative
sentence) and a question: whereas interrogatives are linguistic entities,
questions are claimed not to be.

Let us finally add that some linguists (cf. Keenan and Hull 1973, and
Hiz 1978) proposed theories in which the semantically meaningful units are
not questions, but question-answer pairs. Sometimes questions are also
analyzed as ordered pairs consisting of interrogative terms and statements
expressing the relevant presuppositions.

1.1.2. Moderate reductionism. The moderate reductionist view considers
questions as linguistic entities which, however, can be reduced to expres-
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sions of some other categories. To be more precise, it is claimed here that
every question can be adequately characterized as an expression which is
synonymous (or synonymous to some reasonable degree) to a certain
expression of a different syntactical category. Or, to put it differently, each
question can be adequately paraphrased as an expression belonging to some
other syntactic category and then formalized within some logic which,
although not primarily designed as the logic of questions, can thus be
regarded as providing us with the foundations of erotetic logic.

Some theorists propose the reduction of questions to declarative formulas
of strictly defined kind(s). Sometimes questions are identified with declara-
tive formulas having free variables, that is, with sentential functions (cf.,
e.g., Cohen 1929). But questions are also identified with sentences, that is,
declarative formulas with no free variables. According to the early proposal
of David Harrah (cf. Harrah 1961, 1963) whether-questions are to be
understood and then formalized as declarative sentences having the form of
exclusive disjunctions, whereas which-questions should be identified with
existential generalizations.

Questions are also identified with imperatives of a special kind. The
imperative-epistemic approach is the most popular here with Lennart Aqvist
and Jaakko Hintikka as its most eminent representatives.

According to Aqvist (cf., e.g., Aqvist 1971, 1972, 1975), a question can
be paraphrased as an imperative-epistemic expression of the form “Let it
(turn out to) be the case that ¢, where ¢ is a formula which describes the
epistemic state of affairs which should be achieved. Pragmatically, a
question is thus understood as an imperative which demands of the respon-
dent to widen the questioner’s knowledge. Questions are formalized within
the framework of some imperative-epistemic logic; on the level of formal
analysis we deal with interrogatives. Each interrogative consists of an
interrogative operator and its arguments. Interrogatives are defined as
abbreviations of certain formulas of the language of the considered impera-
tive-epistemic logic.

The imperative-epistemic approach to questions is also adopted by
Jaakko Hintikka in his theory of questions and answers (cf., e.g., Hintikka
1974, 1976, 1978, 1983). Hintikka interprets questions as requests for
information or knowledge: according to his view, each question can be
paraphrased as an expression which consists of the operator “Bring it about
that” followed by the so-called desideratum of the question. The desidera-
tum describes the epistemic state of affairs the questioner wants the re-
spondent to bring about. Although the main ideas of Aqvist and Hintikka
are similar, they are elaborated on in different ways.
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As far as the moderate reductionist view 1s concerned, the imperative-
epistemic approach is the most widely developed one. Yet, there are also
other proposals. In particular, there is an old idea (which goes back at least
to Bolzano) that the paraphrase of a question should contain an optative
operator. (It is worth noticing that Hintikka sometimes calls the operator
“Bring it about that” an “imperative or optative operator.”) Apostel (cf.
Apostel 1969) claims that questions can be reduced to expressions which
contain epistemic, deontic and alethic operators as well as the assertion
operator; yet, Apostel also claims that the deontic operator “ought to™ used
by him should be replaced by some optative or imperative operator when a
more adequate analysis of such operators will be available. In a short note
Aqvist (cf. Aqvist 1983) sketched an outline of the imperative-assertoric
analysis of questions; according to this proposal, questions should be
paraphrased (and then formalized) as imperatives which contain the asser-
toric operator “You tell me truly that” instead of the epistemic operator “I
know that.” Let us stress, however, that none of the above proposals has
been elaborated on.

1.1.3. Non-reductionism. According to the non-reductionist approach,
questions are specific expressions of a strictly defined form; they are not
reducible to expressions of other syntactic categories.

The most widespread proposal here is to regard a question as an expres-
sion which consists of an interrogative operator and a sentential function.
This view is accepted, among others, by Ajdukiewicz (cf., e.g., Ajdu-
kiewicz 1974), Hiz (cf. Hiz 1962), Kubinski (cf., e.g., Kubinski 1960,
1971, 1980), Koj (cf. Koj 1972), Leszko (cf., e.g., Leszko 1983), and
Harrah in his later papers (cf., e.g., Harrah 1975, 1984). Some prominent
authors (e.g. Carnap, Reichenbach, Cresswell) who only incidentally paid
attention to questions also shared this view. Yet, the above idea is most
widely elaborated on in the books and papers of Tadeusz Kubinski.

Kubinski’s analysis is mainly a syntactical one: questions of a formalized
language are defined as expressions which consist of interrogative operators
and sentential functions. Interrogative operators, in turn, consist of both
constants and variables. The only free variables in the sentential functions
which occur in questions are the variables of the corresponding interroga-
tive operators; these variables are “bound” by the interrogative operators.
The variables which occur in questions may belong to various syntactical
categories. Roughly, the categories of variables indicate the (ontological)
categories of objects which are asked about. For example, a question whose
interrogative operator contains only individual variables asks about individ-
uals: If the relevant variables run over sentential connectives, then the



185

corresponding questions are about either the existence of some state(s) of
affairs or some connection(s) between states of affairs. Questions with
predicate variables, in turn, ask about properties or relations. When a
question contains only sentential variables, it is a question about logical
values (truth and falsehood). Kubinski considers also “mixed” questions,
that is, questions whose interrogative operators contain variables belonging
to two or more different categories.

Although the “interrogative operator-sentential function” view is shared
by most of the adherents of the non-reductionist approach to questions,
there are also other proposals. Among them special attention should be paid
to Nuel D. Belnap’s theory of questions and answers (cf., e.g., Belnap
1963, and Belnap and Steel 1976).

Belnap distinguishes between: (a) natural language questions, (b) inter-
rogatives and (c) questions understood as abstract (set-theoretical) entities.
Interrogatives are expressions of some formalized languages. They are not
only formal counterparts of natural language questions, but they also
express questions understood as abstract entities.

A simple interrogative consists of the question mark ?, the lexical
subject and the lexical request. The question mark is interpreted as a sign
of the function which assigns to the lexical subject and the lexical request
of a simple interrogative the corresponding (abstract) question; such a
question consists, in turn, of the abstract subject and the abstract request. A
compound interrogative can be obtained from simple interrogatives by
performing some (logical of Boolean) operations on them or their lexical
subjects.

The basic idea of Belnap’s approach is that an interrogative “presents”
a set of alternatives together with some suggestions or indications as to what
kind of choice or selection among them should be made; the situation is
analogous in the case of the corresponding questions. The function of the
lexical subject of an interrogative is to offer the relevant (nominal) alterna-
tives, whereas the role of the lexical request is to characterize the required
kind of selection. The lexical request consists of three parts: the lexical
selection-size specification, the lexical completeness-claim specification, and
the lexical distinctness-claim specification. Roughly, the lexical selection-
size specification informs how many (that 1s, how many exactly, how many
at least and/or how many at most) of the alternatives offered by the lexical
subject of the interrogative are called for. The lexical completeness-claim
specification, in turn, informs about the amount of true nominal alternatives
called for; there are interrogatives which call for all the true alternatives
presented by them, but there are also interrogatives which do not demand
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so much. Finally, the lexical distinctness-claim specification tells whether
the alternatives called for should be semantically different.

1.2. Answers

Most logical theories of questions pay at least as much attention to answers
to questions as to questions themselves. It is usually assumed that a question
can have many answers; the phrase “answer to a question” is no! used
synonymously with “the true answer to a question.” In other words, the
analyzed answers are usually possible answers: their logical values are not
prejudged. Yet, it is not the case that all possible answers are equally
interesting to erotetic logicians. The standard way of proceeding is to define
some basic category of possible answers. They are called direct answers
(Aqvist, Belnap, Harrah, Kubidski), proper answers (Ajdukiewicz), suffi-
cient answers (Stahl), conclusive answers (Hintikka and his associates),
indicated replies (Harrah in his later papers), etc. Those “principal”
possible answers (let us use this general terms here) are supposed to satisfy
some general conditions, usually expressed in pragmatic (in the traditional
sense of the word) terms. For example, direct answers in Kubiiski’s sense
are “these sentences which everybody who understands the question ought
to be able to recognize as the simplest, most natural, admissible answers to
this question” (Kubinski 1980, p. 12). Direct answers in Belnap’s sense are
the answers which “are directly and precisely responsive to the question,
giving neither more nor less information than what is called for” (Belnap
1969a, p. 124). Direct answers in Harrah’s sense are replies which are
complete and just-sufficient answers (cf. Harrah 1963, p. 26 et al.). In the
light of Hintikka’s theory a reply is called conclusive just in case it com-
pletely satisfies the epistemic request of the questioner, that is, brings about
the epistemic state of affairs the questioner wanted to be brought about.
Let us stress that although the above conditions are formulated in
pragmatic terms, some of the logical theories of questions define the
principal possible answers to questions or interrogatives of formalized
languages in terms of syntax and/or semantics. The questions (interrogat-
ives) of formalized languages, however, are usually formalizations of
natural language questions. Consequently, the principal possible answers are
usually defined in such a way that the natural language sentences which
correspond to them are those answers to the analyzed natural language
questions which have the above-mentioned pragmatic properties. Or, to be
more realistic, to define them in such a way is the aim of the enterprise.
Yet, there are natural language questions which admit many readings and
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thus many formalizations. There are also natural language questions which
seem to have no well-defined sets of answers; why-questions are often
recalled in this context. Moreover, most theories admit questions or inter-
rogatives which have no counterparts in natural languages, but nevertheless
have well-defined sets of the “principal” possible answers.

It is not the case that only the principal possible answers are of interest
to erotetic logicians. Most theories provide us also with definitions of other
kinds of possible answers: partial answers, complete answers, just-complete
answers, incomplete answers, corrective answers, etc. These answers are
usually defined in terms of the “principal” answers; yet, it also happens that
they (or some of them) are defined independently. Their definitions differ
from theory to theory; no well-established terminology has been elaborated
yet.

Let us finally add that sometimes replies which are not statements (e.g.
noun phrases, nods, grunts) are regarded as answers; in most cases, how-
ever, answers are assumed to be statements and replies of other kinds are
regarded as abbreviations of the corresponding statements.

2. General assumptions

As the above sketchy presentation shows, first-order languages (as well as
other formalized languages) can be supplemented with questions in different
ways. Yet, regardless of the way how the extension goes on, it requires,
first, the introduction of mew symbols to the vocabulary of some basic
extensional formalized language. Questions (or interrogatives) are made up
of the new symbols and the old ones. Then the assignment of the principal
possible answers to questions takes place; this is sometimes done in purely
syntactical terms, but also on the level of semantics or/and pragmatics. The
principal possible answers are usually expressions of the basic extensional
language; in most cases they are declarative well-formed formulas of it. The
result is a question-and-answer system.

In what follows we will be adopting the following general assumptions.
First, we assume that some first-order language with identity &, is given.
Second, we assume that the vocabulary of &, is supplemented with some
new symbols in order to constitute the vocabulary of some new (formalized)
language £. By terms and declarative well-formed formulae (d-wffs for
short) of £ we shall mean those of ¥,. We assume that the language £
contains some new category of meaningful expressions (built up, int.al, by
means of the new symbols) which are called questions; yet, we do not
forejudge the way of constructing questions of &£. We then assume that to
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each question of &£ there is assigned an at least two-element set of principal
possible answers, which are sentences (d-wffs with no free variables) of &£.
For brevity we shall call them direct answers to the question.

Although the above conditions are rather general, it cannot be said that
they are uncontroversial; it even cannot be said that they are fulfilled by
each existing question-and-answer system. The motivation for some of them
is philosophical. We require each question to have at least two principal
possible (i.e. direct) answers because we think that a necessary condition of
being a question is to present at least two “alternatives” or conceptual
possibilities among which some selection can be made. The “Hobson
choice™ questions are thus excluded, but rhetorical questions are allowed —
the selection need not be rational. Some logical theories of questions (for
example, Belnap’s theory or Kubifiski’s theory) allow questions which have
only one direct answer, but it seems that this step is motivated rather by the
pursuit of generality than other reasons. Concerning the condition according
to which each direct answer is a sentence: in the light of semantics we are
going to propose the free variables are interpreted in the “generalizing”
manner (not as “dummy” names): a sentential function of the form Ax; is
true if and omly if, to speak generally, it is satisfied by all the possible
values of x;. Under this interpretation a sentential function expresses a
condition which may be satisfied by some object and not satisfied by others;
on the other hand, we want the principal possible answers to be answers in
the very serious sense of the word. But the most controversial is of course
the assumption according to which each question has a set of principal
possible answers. It cannot be said that each question analyzed in any
logical theory of questions fulfills this condition; it also cannot be said that
any natural-language question fulfills it. Yet, some of them do, and most
question-and-answer systems distinguish questions having this property. So
the above assumption may be viewed as restricting the range of applicability
of the concepts we are going to propose. In other words, our further
considerations pertain to first-order languages with identity enriched with
questions in such a way that each question has at least two-element set of
principal possible answers; these answers are sentences of the basic exten-
sional language. Yet, let us stress, the details of the extension procedure are
irrelevant from the point of view of applicability of the concepts we are
going to propose.

We will be using the letters 4, B, C, ..., possibly with subscripts, as
metalinguistic variables for d-wffs, and the symbols X, X, ..., ¥, 1}, ..., Z,
Z,, ... as metalinguistic variables for sets of d-wffs. The symbols Q, Q,, ...
will be used as metalinguistic variables for questions. The set of (all) direct
answers to a question Q will be referred to as dQ. On the metalanguage
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level we assume the von Neumann—Bernays—Godel version of the set
theory (we choose this version because we want to have the possibility of
speaking about both sets and classes). We shall use the standard set-theoreti-
cal terminology and notation. The expression “iff” is an abbreviation of “if
and only if.”

3. Basic concepts

3.1. Interpretations, satisfaction and truth

According to what has been said above the language &£ results from the
first-order language with identity &£,. To speak generally, our first step is
to supplement the language ¥, with a standard model-theoretical semantics.
To be more precise, we shall first define some concepts which do not
pertain to questions of £.

Let us temporarily assume that the vocabulary of & contains apart from
some -predicate symbol(s) also some function symbol(s) and individual
constant(s). By non-logical constants of £ we mean below individual
constants, function symbols and predicate symbols of this language.

DEFINITION 1. An interpretation of the language &£ is an ordered pair
<M, >, where M 1s a non-empty set and f 1s a function defined on the
set of non-logical constants of &£ which fulfills the following conditions:
(i)  for each individual constant g;, f(g) € M,

(i)  for each m-argument function symbol F, f(F;") is a n-argument
function defined on the set M and whose values belong to the set
Ma

(iii) for each n-place predicate symbol P/, f(P") is a n-ary relation in
M.

If <M, f> is an interpretation, the set M is called the domain of this
interpretation, whereas the function f is called the interpretation function.
Note that the new symbols which enable to form questions of & are not
arguments of an interpretation function!

When speaking about interpretations we will be using the symbols &,
Bl
The definition of the concept of interpretation should be adjusted in an
obvious way if the vocabulary of X contains no function symbols or no
individual constants.
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Let & = <M, f> be an arbitrary but fixed interpretation of &£. A &-
valuation is a denumerable sequence of elements of the domain of the
interpretation & (by “denumerable” we mean here and below “countably
infinite”). The concept of value of a term of £ in the interpretation & with
respect to a given F-valuation s is defined in the standard way. Similarly,
the concept of satisfaction of a d-wff in the interpretation & by a §-valua-
tion s is defined in the usual manner.

A d-wff A of &£ is true in an interpretation & of & if and only if 4 is
satisfied in & by each &-valuation. If a d-wff A is true (is not true) in ,
we write & | A (we write & non | A). By a model of a set of d-wffs X we
mean any interpretation of the language in which all the d-wffs in X are
true. If an interpretation & is a model (is not a model) of a set of d-wffs X,
we write & E X (we write & non E X).

Let us stress that the concepts of satisfaction and truth do not pertain to
questions of £.

3.2. Normal interpretations and consistency

Let us now assume that the class of interpretations of &£ includes a non-
empty subclass (not necessarily a proper subclass) of normal interpretations.
The reasons for distinguishing normal interpretations from the remaining
ones can be various. For instance, one may intend to construe some non-
logical constant(s) in a way that complies with some intuitions; in this case
normal interpretations can be defined as those which make true some
definition(s) or meaning postulate(s) worded in £. Normal interpretations
can also be defined as models of some first-order theory worded in (the
declarative part of) £. They can also be defined as those models of such a
theory which fulfill some additional conditions; the so-called standard
models of Peano’s arithmetics give us a simple example here. Another
possibility lies in defining normal interpretations as those which make true
some sentences which are regarded as “laws of science”, that is, first-order
counterparts of some scientific laws (expressed in £ which serves as the
language of logical analysis). Normal interpretations can also be identified
with the “intended models” in the sense of philosophy of science. But
normal interpretations can also be distinguished for purely “erotetic”
reasons. For example, in Belnap’s theory of questions special attention is
paid to those interpretations of the basic “assertoric” languages in which, to
speak generally, the objects assigned to terms that belong to the nominal
category determined by a given category condition are among the objects
that satisfy this category condition'. When questions about objects that
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satisfy some sentential function or functions are considered, it seems natural
to call normal interpretations only those interpretations in which each
element of the domain has a name: by doing so we can avoid the situation
that there are objects which satisfy the appropriate sentential function(s), but
nevertheless the analyzed questions have no true direct answers.

It seems impossible to define the general concept of “normalness™ of
interpretation: this concept varies from language to language. As far as the
language & is concerned we only assume that the class of normal interpreta-
tions of it exists and is non-empty. Moreover, the remaining semantic
concepts pertaining to the language &£ will be defined here by means of the
concept of normal interpretation of &£. Thus their definitions remain sche-
matic until the concept of normal interpretation of &£ will be defined in
detail. But & is assumed to be an arbitrary but fixed formalized language
which fulfills some general conditions and the situation is analogous in the
case of its semantics. To speak generally, we thus leave room for different
possibilities. Let us stress that we even do not assume (but also do not
deny) that the class of normal interpretations of £ is a proper subclass of
the class of all interpretations of &: it may happen that all interpretations of
some language are regarded as normal.

A d-wif A of & is called a rautology of £ if and only if A is true in each
normal interpretation of £. A d-wff A of & is said to be a contradictory d-
wif (or contradiction) of £ if and only if there is no normal interpretation
& of &£ such that some $-valuation satisfies 4 in §. A d-wff A of £ is a
synthetic d-wff of & just in case 4 is neither a tautology of &£ nor a contra-
dictory d-wff of &£.

By a normal model of a set of d-wffs X of £ we mean any normal
interpretation of £ being a model of X. A set of d-wffs X of & is said to be
consistent just in case there is a normal model of X; otherwise X is said to
be inconsistent. We shall use the symbol In¢ for the family of all inconsis-
tent sets of d-wffs-of £.

4. Entailment and multiple-conclusion entailment
4.1. Entailment
Let us assume again that the class of normal interpretations of &£ is defined

in some way or another. The semantic concept of entailment in a language
can now be defined as follows:
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DEFINITION 2. A set of d-wffs X of L entails in £ a d-wif A of L iff A
is true in each normal interpretation of &£ in which all the d-wffs in X
are true.

Let us stress that the above concept of entailment is relativized to the
class of normal interpretations of the considered language. Thus entailment
in a given language need not be tantamount to logical entailment; of course
these concepts coincide if each interpretation is regarded as normal. The
concept of logical entailment we have in mind here 1s defined as follows: X
logically entails A iff A is true in each interpretation of the language in
which all the d-wffs in X are true.? In general, the stronger the conditions
we impose on normal interpretations the wider becomes the range of
entailment in the language. But sometimes this is the effect we intended to
achieve: if we intend to reflect in a formal language some non-logical
implicatures which are already present in the natural language which is the
subject of formalization, the simplest way is to define entailment according
to the patiern presented by Definition 2 and to define normal interpretations
in the appropriate manner: as those which make true some meaning postu-
lates, or some theory, or some “laws”, etc.>

We shall use the symbol [ for entailment in a language.

We say that two d-wffs A, B of £ are equivalent if and only if B is
entailed in & by A and A is entailed in £ by B.

Let us now introduce the concept of compactness of entailment. A
relation [ of entailment in a language is said to be compact if whenever
X | A there exists a finite subset Y of X such that ¥ E A. We neither
assume nor deny here, however, that entailment in & is compact; there are
languages of the considered kind in which entailment is compact, but there
are also languages in which it is not. The compactness of entailment
depends on the conditions imposed on the class of normal interpretations.

4.2. Multiple-conclusion entailment

When we are dealing with questions whose sets of direct answers are well-
defined, we may think about the direct answers as offering some possibil-
ities or “alternatives” among which some selection should be made. Thus
some notion of, to speak generally, “entailing a set of possibilities™ is
needed. There 1s a logic, however, within which such a notion has been
elaborated on: it is multiple-conclusion logic (cf. Shoesmith and Smiley
1978; see also Scott 1974, and Zygmunt 1984).
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Multiple-conclusion logic generalizes the concept of entailment: now a
set of conclusions is allowed. Any such set is regarded as, intuitively
speaking, setting out the field within which the truth must lie if the premises
are all true. Let us then introduce the concept of multiple-conclusion
entailment.

DEFINITION 3. A set of d-wffs X of & multiple-conclusion entails in £ a
set of d-wffs ¥ of &£ if and only if the following condition holds:
(*)  whenever all the d-wffs in X are true in some normal interpreta-
tion of &, then there exists at least one d-wff in ¥ which is true
in this interpretation of X£.

To speak generally: X multiple-conclusion entails ¥ just in case Y must
contain at least one true d-wff if all the d-wffs in X are true; “must” in the
sense that it is impossible that all the d-wffs in ¥ are not true in any normal
interpretation of the language which makes true all the d-wffs in X.

We will be using the term “mc-entailment” instead of the long expres-
sion “multiple-conclusion” entailment.

We shall use the symbol |& for me-entailment in a language. If ¥ is not
mc-entailed by X, we write X non |= Y. If a set of d-wffs ¥ is mc-entailed
by a singleton set {4}, we simply say that ¥ is mc-entailed by the d-wff 4.

The concept of multiple-conclusion entailment is a generalization of the
standard (i.e. “single-conclusion”) concept of entailment. As an immediate
consequence of Definition 2 and Definition 3 we get:

COROLLARY 1. X E 4 iff X |= {4}.

Corollary 1 says that a set of d-wffs X entails a d-wff 4 just in case the
set X mc-entails the singleton set whose element is the d-wff A. Thus
entailment is definable in terms of mc-entailment. On the other hand, in the
general case mc-entailment is not definable in terms of entailment. It
happens that a set of d-wffs X mc-entails some set of d-wffs ¥, but does not
entail (in the standard sense of the word) any d-wff in ¥. The sets of the
form {4 v —A} and {4, "A}, where A is an atomic sentence, give us a
simple example here.

The basic properties of mc-entailment are characterized by the following
corollaries ( | stands below for mc-entailment in &£; let us recall that &£ is
an arbitrary but fixed language that fulfills the conditions listed above):

COROLLARY 2. If XN Y = @, then X|= Y.
COROLLARY 3. If X S X;. Y S Y, and X |= Y, then X, |= Y.
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COROLLARY 4. If X U Z, |- Y VU Z, forany Z,, Z, such that Z, N Z, =
GandZ, U Z, = Z, then X | Y.

Corollaries 2 and 3 are immediate consequences of Definition 3. For the
proof of Corollary 4 assume that X non |- Y. So there exists a normal
interpretation & of & such that & | X and for each B € Y, & non | B. Let
Z, be the set of all the d-wffs of &£ which are true in § and let Z, be the set
of all the d-wffs of &£ which are not true in §. We now have X U Z, non |=
Y U Z, as required.

Thus mc-entailment in any of the considered languages is a multiple-
conclusion consequence in the sense of the monograph Shoesmith and
Smiley (1978) (see also below).

A relation | of mc-entailment is said to be compact if whenever X |- ¥
there exist finite subsets X; of X and ¥; of ¥ such that X, |= ¥;. We have:

COROLLARY 5. Mc-entailment in £ is compact iff entailment in £ is
compact.

Proof:
(=) By Corollary 1.
(<) Let us first observe that if entailment in &£ is compact, then the class of
normal interpretations of & fulfills the following condition:
(:) for each set of d-wffs X of &: if each finite subset of X has a normal
model, then the set X has a normal model.

For, if there is a set of d-wffs, say, X;, such that each finite subset of X;
has a normal model, but X; has no normal model, then X; is an infinite set;
moreover, X; entails some contradictory sentence, say, 4, which is not
entailed by any finite subset of X;. It follows that entailment in &£ is not
compact; so if entailment in & is compact, the condition (:) holds.

Since the compactness of entailment yields the condition (:), it suffices
to prove that if X |- ¥ and the condition (:) holds, then there are finite sets
X, Y;such that X; € X, ¥, € Y and X, |- ¥;. Moreover, it suffices to
consider the cases in which X or Y are infinite sets.

Assume that ¥ is an infinite set. Let uc(Y) be the set of universal clo-
sures* of the d-wffs of Y. Let us designate by —uc(Y) the set of negations
of the sentences of the set u#c(Y). Suppose that X |= Y. Hence X U —uc(Y) €
Inc. By condition (:) we get that there exists a finite and non-empty subset
Z of the set X U —1ue(Y) such that Z € Inec. There are three possibilities: (a)
Z < X (b)Z SucY), ©)Z © X U —uc(Y), where Z € X and Z
& uc(Y). If the possibility (a) holds, then for each finite subset Y, of the
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set ¥ we have Z |= ¥;; at the same time Z is a finite subset of the set X. If
the possibility (b) takes place, then some finite subset of the set ¥ is mc-
entailed by the empty set and thus also by each finite subset of the set X. It
is obvious that if the possibility (c) holds, then some finite subset of the set
Y is mc-entailed by some finite subset of the set X.

Assume that X is an infinite set. If ¥ = @, then X € Inc. By condition
(:) we get that there exists a finite subset X; of the set X such that X; € Ine.
Thus X, |- 9; on the other hand, @ is a finite subset of Y. If ¥ # O, we
proceed analogously as in the case in which Y is an infinite set. []

Thus mc-entailment in a language is compact just in case entailment in
this language is compact. Let us stress that Corollary 5 speaks of any
language of the considered kind. Since we neither assume nor deny here
that entailment in & is compact, the same holds true in the case of mc-
entailment in £: we leave room for different possibilities.

By a sentence we mean here a d-wff with no free variables; otherwise a
d-wff is said to be a sentential function. One can casily prove:

COROLLARY 6. If A, ..., A, are sentences, then {4, v ... v 4.} |F {4;,
S

COROLLARY 7. If 4, ..., A, are sentences, then: X |= {4,, ..., 4.} iff
XI:A'l Vo o... Vv An.

According to Corollary 6, a finite and non-empty set of sentences of a
given language is mc-entailed in this language by a disjunction of all its
elements (to be more precise, by a singleton set which contains this disjunc-
tion). Corollary 7 says that a finite and non-empty set of sentences is mc-
entailed by a set of d-wffs X just in case the set X entails some disjunction
of all the elements of this set. Let us stress that the corollaries 6 and 7
describe some general properties of mc-entailment: they are true with
respect to any language of the considered kind. Let us also stress that the
assumption that 4, ..., 4, are sentences is essential: in the case of senten-
tial functions the situation is different. For, let us consider a sentential
function P(x;) (where P is a one-place predicate symbol) of some language
and let us assume that there is a normal interpretation & of the language
such P(x;) is satisfied in & only by some $-valuations, but not by all of
them. The set {P(x) v —P(x)} does not mc-entail in the analyzed language
the set {P(x)), 7P(x))}, but does entail the sentence P(x) v 7 P(x,). To give
a more concrete example: let us imagine that P stands for “is a prime” and
the domain of the interpretation consists of all the natural numbers.
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The universal closure® of a d-wff A is referred to as A. The following
is a consequence of the corollaries 3, 5 and 7:

COROLLARY 8. If entailment in & is compact, X is a set of d-wffs of £
and Y is a non-empty set of d-wifs of £, then X | Y iff either there is A
€ Ysuch that X = A or there are Ay, ..., A, € Ysuchthat X A, v ...
v A,

Thus if entailment is compact, mc-entailment of a non-empty set of d-
wifs Y reduces either to entailment of the universal closure of a single d-wif
of ¥ or to entailment of some disjunction of universal closures of d-wffs of
Y. It does not mean, however, that the concept of mc-entailment is super-
fluous: there are languages of the considered kind in which entailment (and
thus mc-entailment as well) is not compact.

Historical note. The idea of multiple-conclusion consequence goes back to
Genizen (1934); one of the possible ways of looking at a valid sequent of
the form 4,, ..., A, ~ By, ..., B, is to construe it, to speak generally, as
stating multiple-conclusion entailment of the set made up of the formulas
referred to by By, ..., B, from the set made up of the formulas referred to
by 4;, ..., 4,,. Under this interpretation the turnstile - is a relation symbol
and a calculus of sequents is a (single-conclusion) metacalculus for a
multiple-conclusion object-calculus. Yet, there is also another possibility: a
sequent 4,, ..., 4,, + By, ..., B, 1s a notation for a formula 4, A ... A 4,
- B, v ... v B, and Gentzen’s calculi of sequents are variants of the
corresponding conventional calculi. Shoesmith and Smiley claim that
Gentzen interpreted his calculi of sequents in this latter way. If this is so,
it is Carnap who for the first time introduced the concept of multiple-
conclusion entailment (cf. Carnap 1943; Carnap uses the term “involu-
tion™). The concept of multiple-conclusion consequence was incorporated
into the general theory of logical calculi by Dana Scott (1974). Multiple-
conclusion consequence and related concepts (multiple-conclusion calculus,
multiple-conclusion rules, etc.) are analyzed in detail in the monograph
Shoesmith and Smiley (1978); for developments see also the book Zygmunt
(1984). Let us add that the approach presented by Shoesmith and Smiley is
much more general than ours: it is not restricted to first-order languages
supplemented with model-theoretical semantics. Assume that L is a formal-
ized language and let us designate by Form(L) the set of formulas of L; the
only condition imposed on Form(L) is the non-emptiness clause. A relation
- between sets of formulas of L is a called a multiple-conclusion conse-
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quence if and only if ~ fulfills the following conditions for any X, ¥, Z S
Form(L):

(C,)(Overlap): IFXNY#@, thenX+ Y.

(C,)(Dilution): IfXeX,Ye YyandX + Y, then X, + Y.

(Cy)(Cut for sets): IfX U Z, - Y U Z, for any Z;, Z, such that Z; N
Z,=Q@andZ; U Z,=Z, then X+ Y

This is the syntactical concept of multiple conclusion-consequence. But
there is also a semantical one. Assume that L is supplemented with some
semantics rich enough to define some (relativized) concept of truth for
formulas. A partition of L is an ordered pair <7, U> suchthatT N U =
@ and T U U = Form(L); we may think of the elements of the set 7 of a
partition <7, U> as of consisting of truths in the sense of the underlying
semantics and of the set If as of consisting of untrue formulas. Let A be a
class of partitions of L. A relation - between sets of d-wffs of L is the
multiple-conclusion consequence relation characterized by A iff for each
partiion <7, U> € A and foreach <X, ¥> e -, XN U # Qor ¥ N
T # @: this is the semantical concept of multiple-conclusion consequence.
It may be proved that each relation being a multiple-conclusion consequence
in the syntactical sense of the word is a multiple-conclusion consequence in
the semantical sense, that is, a multiple-conclusion consequence character-
ized by some class of partitions of the language. It can also be proved that
for each class of partitions of the language, the multiple-conclusion conse-
quence characterized by this class is a multiple-conclusion consequence in
the syntactical sense of the word, that is, fulfills the conditions (C,), (C;)
and (C;). For proofs, see Shoesmith and Smiley (1978), p. 30.

What we have called above multiple-conclusion entailment in £ would
presumably be called by Shoesmith and Smiley multiple-conclusion conse-
quence characterized by the class of normal interpretations of £, or, to be
more precise, by the class of partitions of the set of d-wffs of £ determined
by the class of normal interpretations of X£.

By means of the concept of mc-entailment we can define certain useful
erotetic concepts in a simple, general and natural way; as a matter of fact,
this concept will be the most useful tool of our further analysis. To our best
knowledge, the idea of applying the concept of mc-entailment in erotetic
logic appeared for the first time in the papers Buszkowski (1987) and
Wiéniewski (1987)6 and in a marginal form in the dissertation Wisniewski
(1986); see also the papers Buszkowski (1989) and Wisniewski (1989) for
more extended expositions. For the application of this concept in erotetic
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logic see also the books Winiewski (1990a) and (1995) and the papers
Wisniewski (1990b), (1991), (1994a) and (1994b).

5. Erotetic concepts
5.1. Soundness, safety and riskiness

The semantic concepts introduced so far do not pertain to questions. Let us
now define the semantical erotetic concepts the introduction of which is the
main goal of this paper.

The first important step is a negative one: we do not assign here truth
and falsehood to questions. The reason is that it is doubtful whether all
questions can express thoughts and describe states of affairs. Yet, we shall
introduce here a more neutral semantic concept of soundness of a question
in a given interpretation of a language.

DEFINITION 4. A question Q of & is sound in an interpretation § of the
language & iff at least one direct answer to Q-is true in $.

The basic idea of this definition was suggested by Sylvain Bromberger
(cf. Bromberger 1992, p. 146). Soundness understood in the above sense is
called by Belnap (nominal) truth (cf. Belnap and Steel 1976, p. 119); yet,
we ‘prefer to use here the more neutral term.

There are questions which are sound in each normal interpretation of the
language, questions which are sound only in some such interpretation(s) and
questions which are not sound in any normal interpretation of the language.
Following Belnap (cf. Belnap and Steel 1976, p. 130; we omit the relativ-
ization to a set of quasiformulae) we shall introduce here the concepts of
safety and riskiness of a question.

DEFINITION 5. A question Q of ¥ is said to be safe iff Q is sound in each
normal interpretation of &; otherwise Q is said to be risky.

Thus a safe question is a question which has at least one true direct
answer in each normal interpretation of the language. Let us observe that
safe questions might also have been defined as questions whose sets of
direct answers are mc-entailed by the empty set; we can easily prove:

COROLLARY 9. 4 question Q of £ is safe iff the set of direct answers 1o
@ is mc-entailed in £ by the empty set.
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Simple yes—no questions, that is, questions whose sets of direct answers
consist of a sentence and its negation, are paradigmatic examples of safe
questions. Let us stress, however, that they are not the only safe questions.
For instance, any questions having at least two direct answers which
contradict each other and any questions which have tautologies among their
direct answers are safe questions. Yet, it can be proved that each safe
question is reducible to a set of questions made up of simple yes—no
questions; it can also be proved that if Q is a safe question which has a
finite number of direct answers or entailment in the language is compact,
then Q is reducible to a finite set of simple yes—no question. For that and
related results see Wisniewski (1994b).

5.2. Just-complete answers and partial answers

If direct answers are defined in syntactic terms, it may happen that a
sentence which is equivalent to a direct answer need not be a direct answer;
on the other hand, such a sentence may perform the same pragmatic func-
tions as a direct answer. Let us then introduce the semantic concept of just-.
complete answer; the definition given below is a slight modification of that
proposed by Belnap (cf. Belnap and Steel 1976, p. 126).

DEFINITION 6. A sentence A of £ is a just-complete answer to a question
Q of & iff there is a direct answer B to Q such that B entails in & the

sentence 4 and A entails in ¥ the answer B.

In other words, a just-complete answer is a sentence which is equivalent
to some direct answer.

It seems natural to call a partial answer to a question any sentence which
is not equivalent to any direct answer to the question, but which is true if
and only if a true direct answer belongs to some specified proper subset of
the set of all the direct answers to the question. In other words, a partial
answer is a sentence which is neither direct nor just-complete answer, but
whose truth guarantees that a true direct answer can be found in some
“restricted area” and whose truth is guaranteed by this fact. By means of
the concept of mc-entailment we can express this intuition as follows:

DEFINITION 7. A sentence A of & is a partial answer to a question Q of
& iff A is not a just-complete answer to Q and there exists a non-empty
proper subset Y of the set of direct answers to Q such that: (i) ¥ is mc-
entailed in &£ by 4 and (ii) 4 is entailed in £ by each element of Y.
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Let us stress that our concept of partial answerhood differs from those
analyzed by Harrah, Belnap, and Kubinski.

If a question has more than two direct answers, then each disjunction of
at least two but not all direct answers which is not equivalent to any single
direct answer is a partial answer to the question. If entailment is compact,
then each partial answer is either a disjunction of at least two but not all
direct answers or a sentence which is equivalent to such a disjunction. The
above definition yields, however, that questions with exactly two direct
answers have no partial answers (let us recall that each question was
assumed to have at least two direct answers). But, looking from the prag-
matic point of view, a question which has exactly two direct answers
requires a selection of one of them and does not leave room for a partial
selection. Moreover, such a question can have answers of other kinds:
incomplete, corrective, etc. We will not define here, however, these
concepts of answers. Let us finally add that if questions with exactly one
direct answer were allowed, no such question would have a partial answer
in our sense.

5.3. Presuppositions of questions

The concept of a presupposition of a question is defined in various logical
theories of questions in different ways. We will define here this concept
following the general idea proposed by Belnap (cf. Belnap 1969b; see also
Belnap and Steel 1976, p. 119).

DEFINITION 8. A d-wff A of & is a presupposition of a question Q of £
iff A is entailed in & by each direct answer to Q.

The main advantage of the above definition is that is expresses a clear
logical intuition: a presupposition of a question is a d-wif whose truth is
necessary for the soundness (having a true direct answer) of the question.

The set of presuppositions of a question Q will be referred to as PresQ.

It can happen that the truth of some presupposition is not only necessary,
but also sufficient condition of soundness of the question. Let us then
introduce the concept of prospective presupposition of a question:

DEFINITION 9. A presupposition 4 of a question Q of ¥ is a prospective
presupposition of Q iff A mc-entails in & the set of direct answers to Q.
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To speak generally, a prospective presupposition is thus a presupposition
which, if true, guarantees the existence of a true direct answer to a ques-
tion.” The set of prospective presuppositions of a question Q will be de-
noted by PPresQ.

The set of presuppositions of a question is always nonempty (at least the
tautologies of the language belong to it), but it need not be the case with the
set of prospective presuppositions. There are languages of the considered
kind which contain questions that have no prospective presuppositions; an
example will be given below. But each question which has only finitely
many direct answers has a non-empty set of prospective presuppositions: by
Corollary 6 a disjunction of all the direct answers is a prospective presuppo-
sition of it. Let us also add that if a question has prospective presupposi-
tions, all of them are equivalent.

Prospective presuppositions should be distinguished from maximal
presuppositions.

DEFINITION 10. A presupposition A of a question Q of £ is a maximal
presupposition of Q iff A entails in & each presupposition of Q.

A maximal presupposition is thus a presupposition which entails any
presupposition. The set of maximal presuppositions of a question Q will be
referred to as mPres(Q.

There is no general reason why each question of any language of the
considered kind should have a maximal presupposition. But each question
whose set of direct answers is finite does have maximal presuppositions:
any disjunction of all the direct answers to it perform this function. Let us
also observe that if a question has prospective presuppositions, all of them
are maximal. This is due to:

COROLLARY 10. PPresQ & mPresQ.

Pr oo f: Assume that A € PPresQ and that A € mPresQ. So there is a
presupposition B of Q such that A non = B; it follows that there is a normal
interpretation & of the considered language such that & 4 and & non
B. But B is a presupposition of Q; so for each C € dQ we have & non | C.
Thus A non |- dQ and hence A & PPresQ. We arrive at a contradiction. []

The converse of Corollary 10 need not be true: there are languages of
the considered kind which contain questions that have maximal presuppo-
sitions which are not prospective presuppositions. Some example may be
helpful here. Let us assume that £* is a language of the considered kind
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whose terms and d-wffs are those of some first-order language with identity
and infinitely many individual constants; assume also that among questions
of &* there is a question whose set of direct answers consists of all the
sentences of the form P(f), where P is a (concrete) one-place predicate
symbol of ¥¥ and ¢ is an arbitrary closed term of £*. Let us designate this
question by Q. Assume that the class of normal interpretations of £*
consists of all the interpretations of the language. Clearly the sentence:

() Ix Px)

is a presupposition of Q°, but is not a prospective presupposition of it: there
are (normal) interpretations of the language in which the sentence (1) is
true, but no sentence of the form P(?) (i.e. no direct answer to Q") is true.
At the same time (1) is a maximal presupposition of Q". For, let us assume
that there is a presupposition, say, 4, of Q" which is not entailed in £* by
the sentence (1). So the set:

(2) {Ix P(x), 4}

where A is the universal closure of A, has a model. But it can be proved
that if X is a set of d-wffs of % such that there are infinitely many individ-
ual constants of ¥* which do not occur in the d-wffs of X, then X has a
model if and only if there is an interpretation § = <M, f> of £* which
is a model of X and fulfills the following condition:

(1) for each y € M there exists a closed term ¢ of ¥ such that for
each $-valuation s, y is the value of ¢ in & with respect to s.

(To speak generally, the condition (i) amounts to saying that each element
of the domain of & has a name in £*). The proof goes along the lines of
the Henkin-style proof of Godel’s theorem of the existence of a model: the
only difference is that we use the individual constants which do not occur
in the d-wffs of X as the “witnesses”. Clearly there are infinitely many
individual constants of ¥ that do not occur in the d-wffs of the set (2); so
there is an interpretation, say, &', of $* which fulfills the condition (i) and
which is a model of the set (2). It follows that for some fixed sentence of
the form P(?), say, P(f), &' is also a model of the set:

(3) {3x P(), "4, P(1)}
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But this is impossible, since P(t") is a direct answer to Q" and thus entails
the sentence A (let us recall that A was assumed to be a presupposition of
the question Q7). We arrive at a contradiction: so the sentence (1) is a
maximal presupposition of Q". On the other hand, (1) is not a prospective
presupposition of the analyzed question.

The example analyzed above is instructive for some other reason as
well: it presents a language which contains questions that have no prospec-
tive presuppositions. If the question Q" of £ had a prospective presupposi-
tion, this presupposition would be entailed by the maximal presupposition
(1). So (1) would be a prospective presupposition of Q"; since it is not, the
question Q" has no prospective presuppositions. Let us stress, however, that
we do not claim here that Q" and similar questions cannot have prospective
presuppositions in any language. The concepts of presuppositions introduced
above are defined by means of the concepts of entailment and mc-entailment
in a language and there are languages of the considered kind in which these
questions do have prospective presuppositions.

Let us finally introduce the concepts of factual presupposition and
maximal factual presupposition, which may be especially useful in the
philosophy of science.

DEFINITION 11. A presupposition A of a question Q of £ is a factual
presupposition of Q iff A is a synthetic d-wff of Z£.

DEFINITION 12. A factual presupposition 4 of a question Q of ¥ is a
maximal factual presupposition of Q iff A entails in £ each factual
presupposition of Q.

Tt is not the case that each question has factual presuppositions. More-
over, there is no general reason why each question which does have factual
presuppositions should have maximal factual presuppositions.

5.4. Relative soundness. Normal questions and regular questions

Let us now introduce the concept of relative soundness of a question, which
seems to be of basic importance to erotetic logic. The underlying intuition
is that a question Q is sound relative to a set of d-wffs X just in case the
question Q must have a true direct answer if all the d-wifs in X are true.
This intuition can be expressed in terms of mc-entailment via

DEFINITION 13. A question Q of &£ is sound relative to a set of d-wffs X
of & iff the set X mc-entails in & the set of direct answers to Q.
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In other words, Q is sound relative to X just in case there is no normal
interpretation of the language in which all the d-wffs in X are true, but no
direct answer to Q is true.

If O is sound relative to a singleton set {4}, we say that Q is sound
relative to the d-wff 4.

Let us stress that the concept of relative soundness introduced above
must be carefully distinguished from the concept of soundness of a question
in an interpretation of the language introduced in Section 5.1: these are
different concepts.

A safe question is sound relative to any set of d-wffs. This is the trivial
case; In order to distinguish the non-trivial cases let us introduce the
following concept:

DEFINITION 14. A question Q of X is made sound by a set of d-wffs X of
&£ iff X mc-entails in & the set of direct answers to Q although the set
of direct answers to Q is not mc-entailed in &£ by the empty set.

Thus @ is made sound by X just in case Q is not sound relative to the
empty set, but @ is sound relative to X. It is clear that only risky questions
can be made sound by sets of d-wffs.

Each question has a non-empty set of presuppositions; the truth of these
presuppositions is a necessary condition for having a true direct answer.
Yet, when we look in the opposite direction, the truth of all the presupposi-
tions need not be a sufficient condition of having a true direct answer: there
are languages of the considered kind in which some questions do not have
this property. The language £* mentioned in Section 3.3 is a case in point
here: since the sentence (1) is a maximal presupposition of the question Q"
but not a prospcctwf: presupposition of it, it happens that all the presupposi-
tions of Q" are true in some normal interpretation of the language, but no
direct answer to @ is true in it. In order to distinguish questions whose
presuppositions guarantee the existence of a true direct answer from the
remaining ones let us introduce the concept of normal question:®

DEFINITION 15. A question Q of &£ is said to be normal iff the set of
direct answers to Q is mc-entailed in & by the set of presuppositions of

0.

A normal question is thus a question which is sound relative to the set of
its presuppositions. Note that since being a normal question depends on mc-
entailment in a language (and thus basically on the conditions imposed on
the class of normal interpretations), the same question occurring in one
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language may be normal in it without being normal in some other language.
Again, the question Q" gives us a simple example here: as far as the
language $¥ is concerned, Q" is not normal in it. It can be shown, how-
ever, that the question Q" would be normal if it occured in a language in
which the class of normal interpretations would be defined in such a way
that the condition (i) of Section 5.3 would be satisfied by each normal
interpretation of it. But any question which has only finitely many direct
answers is normal in any language of the considered kind; moreover, each
safe question is normal. The remaining questions, however, may or may not
be normal: it depends on the semantics of the language.

Let us now introduce a more specific concept of regular question. To
speak generally, a question Q will be called regular if there is a single
presupposition of @ whose truth implies the existence of a true direct
answer to 0. To be more precise, we adopt

DEFINITION 16. A question Q of &£ is said to be regular iff there is a
presupposition 4 of Q such that A mc-entails in &£ the set of direct
answers to Q.

In other words, a question is regular if it is sound relative to some of its
presuppositions. Note that each question whose set of direct answers is
finite is regular. We also have:

COROLLARY 11. A question Q is regular iff Q has prospective presuppo-
sitions.

COROLLARY 12. Each regular question is normal.

COROLLARY 13. If entailment in & is compact, then each normal ques-
tion of £ is regular.

Corollary 11 shows that the concept of regular question can be defined
in terms of prospective presuppositions. Corollaries 12 and 13 imply that
“being a normal question” and “being a regular question” coincide if
entailment in a language and thus also mc-entailment in it are compact. Yet,
there are languages of the considered kind in which entailment is not
compact.

5.5. Self-rhetoricity and informativeness. Proper questions

Let us now define the concept of a self-rhetorical question.
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DEFINITION 17. A question Q of &£ is said to be self-rhetorical iff there
is a direct answer A to Q such that A is entailed in £ by the set of
presuppositions of Q.

By proposing the above definition we are not going to explicate the
general notion of rhetoricity of a question: this notion is clearly a pragmatic
one (in the traditional sense of the word). Our aims are limited: we attempt
to explicate the concept of “rhetoricity for logical reasons.” The following
are examples of self-rhetorical questions: questions having tautologies as
direct answers, questions all of whose direct answers are contradictory
sentences, questions which have only one direct answer being a synthetic
sentence. Note that if questions with exactly one direct answer were al-
lowed, these questions would be self-rhetorical questions.

Each self-rhetorical question is normal in the sense of Definition 15. In
order to distinguish normal questions which are not self-rhetorical from the
remaining ones we introduce:

DEFINITION 18. A question Q is proper iff Q is normal but not self-
rhetorical.

Let us finally introduce a certain concept of informativeness of a ques-
tion.

Looking from the intuitive point of view, a question is informative
relative to a given set of d-wffs just in case each direct answer to the
question conveys some information which cannot be legitimately drawn
from the analyzed set of d-wifs. In order to explicate this notion let us first
introduce the concept of content of a set of d-wffs. Let X be a set of d-wffs
of X£. The content of the set X (in symbols: Ct(X)) is defined as follows:

DEFINITION 19.
Ct(X) = {4: A is entailed in &£ by X and 4 is not a tautology of &£}

In other words, the content of X consists of all the d-wffs which are non-
trivially entailed by X (i.e. are not tautologies).’

The relativized concept of informativeness of a question can now be
defined as follows:

DEFINITION 20. A question Q is informative relative to a set of d-wffs X
iff for each 4 € dQ, Ct(X) is a proper subset of Ct(X U {4}).
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Thus a question Q is informative relative to a set of d-wifs X just in case
the content of X is a proper subset of the content of any set which results
from X by adding a direct answer to Q: any such set entails more non-
trivial consequences than the initial set X. It is easily seen, however, that O
is informative relative to X if and only if no direct answer to Q is entailed
by X.

By proposing the above definition we identify the possibility of extract-
ing information from a set of d-wffs with the entailment of the sentence
conveying this information. No doubt, there is plenty of idealization in such
an approach; consequently, Definition 20 presents an idealized concept of
informativeness of a question. The same holds true in the case of our
definition of self-rhetoricity. We can easily prove:

COROLLARY 14. A question Q is not self-rhetorical iff Q is informative
relative to the set of presuppositions of Q.

Let us finally note:

COROLLARY 15. 4 question Q is proper iff Q is normal and Q is informa-
tive relative to the set of presuppositions of Q.

Thus a proper question is a question which is both normal and informa-
tive relative to the set of its presuppositions.
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NOTES

* This paper was completed in February, 1995. Some material from it was then used
in the book The Posing of Questions: Logical Foundations of Erotetic Inferences, which
was completed later.

1 Cf. Belnap and Steel (1976), p. 10 et al.

2 Let us observe that according to this definition a d-wff of the form P(x) logically
entails its universal generalization, i.e. ¥x; P(x,). This is intuitively acceptable only if the
free variable x; in P(x;) is not construed as a name of some unspecified object, but is
interpreted in the “generalizing” manner, as referring to any element of the domain.
This interpretation of free variables underlies the above definitions of logical entailment
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and entailment in a language. Let us add that the system of classical predicate calculus
with identity which is complete with respect to logical entailment defined m the above
manner can be built, int.al., as follows: (1) Axioms: substimtion-instances of valid
formulas of classical propositional calculus as well as the standard axioms for identity;
(2) Rules: modus ponens, substitution of terms, elimination of V, introduction of V,

elimination of 3, introduction of 3.
3 Cf. e.g. Wojcicki (1982).
4 If A is a sentence, then the universal closure of A4 is equal to A itself. If A is a

sentential function and x;,, ..., x;, (where x; < ... < x,) are the all free variables of 4,
then the universal closure of 4 is of the form Vx;; ... Vx, A. The universal closure of
a d-wff 4 will be designated by A.

5 Cf. note 4.

6 The paper Wisniewski (1987) is an abstract of the paper presented at the VIII
International Congress of Logic, Methodology and Philosophy of Science, Moscow
1987. For some mysterious reasons the organizers retyped the manuscript before printing
without making any proof reading. As a result this paper presumably wins the world
record for misprints.

7 In Belnap’s terminology a prospective presupposition is a d-wff which expresses
the presupposition of the question. Belnap, however, defines this concept without
applying the concept of mc-entailment.

8 Buszkowski, who in fact introduced this concept (cf. Buszkowski 1989), uses here
the term correct question.

9 The definition proposed above is similar to that given by Popper (cf. Popper 1959,
p. 120), who, however, uses the concept of derivability.
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