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Effectiveness
of Question-Answer Systems’

1. Questions and answers. The question “What is a question?” still ex-
presses an open issue. Although the beginnings of the modern logic of
questions date back to late fifties and early sixties of the 20th century, no
commonly accepted, paradigmatic theory has been elaborated so far.

1.1. Levels of analysis. The lack of consensus is not surprising, however,
since the term “question” can be understood:

e syntactically: as referring to a sentence of a particular kind, that is, to
an interrogative sentence,

e semantically: as referring to the semantic content of an interrogative
sentence (and possibly some other expressions),

e pragmatically: as referring to a speech act that is typically performed
in uttering questions syntactically and/or semantically construed.

These concepts differ not only in content, but also in scope. There are
questions (in the semantic or pragmatic sense of the word) which are not
expressed by interrogative sentences. Similarly, interrogative sentences do
not always express questions semantically or pragmatically conceived.

Some theories of questions ignore the pragmatic level, while others over-
estimate it. In most theories, however, all the levels are taken into consider-
ation, although with emphasis put on one or other of them. But even if the
primary level of analysis is fixed, alternative accounts are still advocated by
different theorists.!

'"The survey paper Harrah (2002) provides a comprehensive exposition of logical theories
of questions elaborated up until the late 1990s. Supplementary information about more
linguistically oriented approaches can be found, e.g, in Groenendijk & Stokhof (1997), Lahiri

*Presented at Unilog’13: 4th World Congress and School on Universal Logic, Rio de Janeiro,
March/ April 2013, Workshop “Logic and Lingustics™.
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1.2. Answers. Most theorists pay at least as much attention to answers
to questions as to questions themselves. The analysed answers are usually
possible answers. The relevant “erotetic” concept of possibility has never
been made precise. Yet, it is clear that “possible” does not yield “true™
some possible answers are true and some are not. Thus, in most theories,
the phrase “an answer to a question” does not amount to “the true answer to
a question”. Moreover, “possible” presupposes neither “being known” nor
“being believed in”, although, of course, some possible answers happen to
be carriers of items of knowledge or belief.? Finally, “possible” implicates
“not the only one”. It is usually assumed that a question may have many
possible answers.

In most theories, some epistemically basic category of possible answers
is distinguished. These answers are called, depending on the theory, direct,
or conclusive, or proper, or sufficient, or exhaustive, or complete, or congruent,
etc. Those principal possible answers (let us use this general term here), ppa’s
for short, are supposed to satisfy some general conditions, usually expressed,
inter alia, in pragmatic terms. For example:

e Harrah (1963): direct answers are replies which are complete and just-
sufficient answers;

e Harrah (2002, p. 1): a direct answer “gives exactly what the question
calls for. (...) The label ‘direct’ (...) connotes both logical sufficiency

and immediacy”;

e Belnap (1969, p. 124): direct answers are answers which “are directly
and precisely responsive to the question, giving neither more nor less
information than what is called for™;

e Kubinski (1980, p. 12): direct answers are “these sentences which ev-
erybody who understands the question ought to be able to recognize
as the simplest, most natural, admissible answers to the question”;

e Hintikka (1978): a reply is called a conclusive answer if it completely
satisfies the epistemic request of the questioner;

e Ginzburg (1995, p. 461): ppa’s form the “class of responses that a
querier would consider optimal.”

Depending on the theory, ppa’s are either syntactic or semantic entities.
Moreover, it is not commonly accepted that all ppa’s are declarative sen-
tences or are expressed by such sentences. Sometimes “short” answers being

(2002), and Krifka (2011). Ginzburg (2011) provides a survey of recent developments in the
research on questions, both in logic and in linguistics. A general overview of approaches to
questions and their semantics can also be found in Widniewski (201x).

2One has to distinguish between knowing that pis a possible answer to a given question
and knowing or believing that p is true. These are independent issues.
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subsentential expressions (e.g. names, noun phrases, or other phrases of a
special form) or semantic counterparts of such expressions are taken into
account as ppa’s; more often, however, short answers are regarded as coded
ppa’s.

Besides ppa’s, other categories of (possible) answers are characterized as
well. Sometimes they are defined in terms of, inter alia, ppa’s. Sometimes,
however, a more general concept of answer is introduced first, and ppa’s are
just very special cases. The “non-ppa” answers are labelled with adjectives
like “partial”, “incomplete”, “indirect®, “corrective”, “eliminative”, etc. The
meanings of these terms vary from theory to theory: so far no commonly
accepted, unified account has been elaborated.

2. Question-answer systems. Whatever questions and answers are con-
ceptualized in detail, theories of questions (logical or even linguistic) pro-
vide formalisms for representing questions and answers. Such a formalism
includes eformulas®, which are either translations of naturaldanguage in-
terrogative sentences or correspond to/express questions semantically con-
strued. Let us stress that eformulas need not be specific; one can prefer a
reductionistic approach to questions and use as e-formulas some imperative-
epistemic expressions, or simply certain epistemic formulas, or declarative
formulas, etc. When a non-reductionistic approach to questions is adopted,
e-formulas differ syntactically from other formulas.

Similarly, ppa’s are represented by nominal ppa’s, being expressions of
the formalism.

The outcome of an analysis, in turn, can be viewed as a guestion-answer
system.

DEFINITION 1. A question-answer system s an ordered triple (1. 0. R),
where:

1. T is the set of wellformed expressions of a language,

2. O is a non-empty set of eformulas of the language,

3. O isaproper subset of 7,

4. T includes a non-empty set of declaratives of the language,

5. R C O x 7T, where R # |, is the answerhood relation, i.e. the set of

ordered pairs (Q), 1)) such that 1) is a nominal principal possible answer to

0.

Let us stress that 7" and © are construed here as sets of linguistic entities,
that is, expressions of a language. Moreover, the answerhood relation R is

*The letter “¢” alludes to “erotetic”.
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understood (only) set-theoretically, as a set of ordered pairs. But recall that
a question-answer system is supposed to display the outcome of an analysis,
not the ways in which the analysis is performed.

The set d defined by:
dQ =4 {Y €T : (Q, V) € R}

is the set of all the nominal principal possible answers to ). Note that for a
given e-formula @, the set d@) is always unique.

It is not prejudged that sets of nominal ppa’s comprise only declarative
sentences/ formulas. It is permitted (but not assumed!) that d@ is empty for
some e-formula(s) of the system.

3. Effective question-answer systems. Question-answer systems can be
evaluated in many respects. Undoubtedly, the following conditions charac-
terize highly desirable properties of a question-answer system:

1. if an expression is an e-formula, this can be effectively established/
computed,

2. if an expression is a nominal principal possible answer to an eformula,
this can be effectively established/computed,

3. the set of declaratives is decidable.

In terms of recursion theory: the set of e-formulas should be recursively
enumerable, the answerhood relation should be recursively enumerable, and
the set of declaratives of the system should be recursive.

In formulating the above requirements we, in principle, follow Harrah
(1969).

The above insights can be expressed in our conceptual setting by intro-
ducing the concept of effective question-answer system.

DEFINITION 2. A guestion-answer system (1, O, R) is effective iff

1. the set of eformulas O of the system is recursively enumerable,
2. the answerhood relation R of the system is recursively enumerable, and

3. the set of declaratives of the system is recursive.

3.1. Remark. We have used above, and will be using below, concepts taken
from (classical) recursion theory. This presupposes some coding of the
expressions considered, that is, expressions of the language of a question-
answer system (sentences, questions, and other expressions of the language)
by natural numbers. But for our purposes it suffices to assume that these ex-
pressions can be coded by natural numbers, i.e. there exists a coding method
according to which each expression is coded by an unique natural number.
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Given the coding, we may say that a set of expressions is recursive iff the cor-
responding set of numerical codes of the expressions of the set is recursive,
and similarly for recursive enumerability.

As usual, we abbreviate “recursively enumerable” as “r.e.”.

4. Harrah’s Theorem. The effectiveness conditions (1) — (3) and their coun-
terparts included in Definition 2 reflect some fundamental insights. How-
ever, in some cases their joint satisfaction can put us into some trouble.
David Harrah writes:

Let us assume that the language L has a finite alphabet, and that the
expressions of L are finite strings of letters of the alphabet, so that the
expressions of L can be alphabetically ordered. Let us suppose that the
set of questions of L is recursively enumerable. (...) Suppose next that
each question either has denumerably many direct answers or can be
asmgned denumerably many in a harmless way (...). Suppose further
that, given a question g, the direct answers to g are recurswely enumer-
able (...). Finally, for simplicity, we may suppose that the direct an-
swers are sentences, or are expressed by sentences, and that sentence of
L is recursive. Assuming all this, we can use Cantor’s diagonal method
to construct a set of sentences which is not the set of direct answers to
any question in the initial enumeration of questions In fact, we can
construct indefinitely many such new sets (...). (Harrah 1969, p. 160)

Harrah also describes a pattern of constructing the “new” sets and ob-
serves that its slight modification produces sets whose elements share some
recursive properties. Yet, he does not claim that the “new” sets are recursive.

In what follows we are going to show one of the ways in which Harrah’s
Theorem can be generalized and strengthened.

5. Double frames. Let us now introduce the concept of double frame.*

DEFINITION 3. A double frame is an ordered triple (9. I', R) such that ¢

and I' are non-empty sets, and R C I' x & is a relation whose domain is I.

Looking from a purely formal point of view, a question-answer system
understood in the sense of Definition 1 is a double frame. Similarly, the
ordered triple:

(D.6,R|D)

where D is the set of declaratives of a question-answer system (1,6, R)
constitutes a double frame. Thus we can apply general results pertaining

‘Cf. Wisniewski & Pogonowski (2010).
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to double frames in the analysis of question-answer systems. However, we
need some some auxiliary concepts first.

Let R7z = {z € & : 2Rz}. Elements of Rz are called R-images of .
DEFINITION 4. A double frame (¢, T, R) is:

1. numerical if @ and I' are sets of natural numbers,

2. effective if it is numerical and & is recursive, I' is r.e., and R is an re.
relation,

3. deeply infinite if @ and I' are countably infinite sets, and each set Rz
is infinite, forall v € I.

We will make use of the following theorem:*

The Recursive Jump Theorem (Wisniewski & Pogonowski 2010). For any
deeply infinite effective double frame (P, I, R) there exists an infinite family =
of infinite recursive subsets of P such that each element of = is different from any
Rz, forallz € T.

6. w-questions. We need one more auxiliary concept.

DEFINITION 5. By an w-question we mean an eformula which fulfils the
following conditions: (1) each nominal ppa to it is a declarative, and (2) the set
of nominal ppa’s to the eformula is denumerable.

By “denumerable” we mean, here and below, “countably infinite”. The letter
w 1s used in order to indicate that the set of ppa’s is equinumerous with the
set of natural numbers. Let us stress that the ppa’s to w-questions are not
numerals, but declaratives.

7. Harrah’s Theorem strengthened. Let us first prove the following:

THEOREM 1. Let (1,60, R) be an dffective question-answer system such that
the set of declaratives of the system is denumerable, and © consists of w-questions.
There exists a denumerable family of infinite recursive sets of declaratives of the
system such that no element of the family is the set of nominal ppa’s to an e-
formula of the system.

Proof. Suppose that © is denumerable. Let D be the set of declaratives of the
system. By assumption, D is denumerable. The system is effective and this
presupposes some coding of well-formed expressions of the language. Let f
be the coding function. Consider the following numerical double frame:

(f[D], f161, R") (1)

* Already used in the previous essay, see page 51.



Essays in Logical Philosophy 59

where R*(f(Q), f(¢)) holds iff R(Q, ¢) holds. Clearly, (1) is a deeply infi-
nite effective double frame. By the Recursive Jump Theorem (and given the
assumed coding) there exists a denumerable family of infinite recursive sets
of declaratives of the system each of which is not the set of nominal ppa’s to
an e<formula of the system.

Now suppose that © is finite. Since D is denumerable and the system
is effective, there are denumerably many infinite recursive subsets of D (for
there exist denumerably many infinite recursive subsets of an infinite recur-
sive set). On the other hand, the assignment of sets of ppa’s to e-formulas in
a question-answer system is unique, and © is only finite. O

Theorem 1 shares the following assumption with Harrah’s Theorem: the
set of nominal ppa’s to each question/e-formula comprises declaratives only
and is denumerable. But this assumption is dispensable, as the next theorem
illustrates.

THEOREM 2. Let (Y. 0, R) be an effective question-answer system such that:

1. the set of declaratives of the system is denumerable, and
2. the set of w-questions of the system is r.e.

There exists a denumerable family of infinite recursive sets of declaratives of the
system such that no element of the family is the set of nominal ppa’s to an e-
formula of the system.

Proof. Let
r.6.R) ®

be a question-answer system that fulfils the assumptions of the theorem and
let 12 be the set of all w-questions of the system. By assumption, (2 is r.e.

Suppose that 2 is denumerable. We define:
R(Q. 1) ¢ R(Q.¥) AQ € L.
Clearly, R is r.e. Now consider the following question-answer system:
(T, 2,R) 3)

Since R is r.e, {2 is r.e., and, by assumption, the set of declaratives of the
system (2) (and thus also of (3)) is recursive, the system (3) is effective. More-
over, {2 is denumerable and the set of declaratives of the system (3) is both
denumerable and recursive. Thus, by Theorem 1, there exists a denumer-
able family of infinite recursive sets of declaratives of the system (3) such
that no element of the family is the set of nominal ppa’s to an e-formula of
the system. But systems (2) and (3) do not differ with respect to their sets
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of declaratives or with regard to w-questions, and, since 2 is the set of all w-
questions of the system (2), no eformula of the system belonging to the set
O\ 12 is an w-question. Hence, there exists a denumerable family of infinite
recursive sets of declaratives of the system (2) such that no element of the
family is the set of nominal ppa’s to an e-formula of (2).

Now suppose that {2 is finite. Since, by assumption, the set of declara-
tives of the system (2) is denumerable, there are infinitely many denumerable
recursive subsets of the set. On the other hand, only finitely many denumer-
able r.e. sets of sentences (or none, if {2 is empty) perform the role of sets of
nominal ppa’s of questions of (2. O

From a formal point of view, the phenomenon pointed out by Theorem

2 is analogous to that which arises when any set of possible worlds is re-

garded as a proposition (see the previous essay): on the one hand there exist

1nexpr6551ble , yet recursive propositions, and, on the other, there exist re-

cursive sets of declaratives which do not constitute sets of (nominal) ppa’s to

any e-formula/questlon of an ¢ffective question-answer system. This is not
surprising, since both results are due to the Recursive Jump Theorem.

Theorem 2 provides an argument against the identification of questions
with sets of declaratives, an attitude which is quite common among logicians
who only occasionally enter the field of the logic of questions. But there is
more in it. The following postulate set by Hamblin (1958):

H: Knowing what counts as an answer is equivalent to knowing the question.

for decades dominated ways of thinking about questions. Theorem 2 shows
that there are cases in which sets of declaratives are “known” (that is, sets of
their numerical codes are recursive), but there is no question corresponding
to (i.e. having as nominal ppa’s the elements of) the “known” sets.

8. Some further consequences. Observe that as an immediate consequence
of Theorem 2 we get:

THEOREM 3. If (Y. 0.R) is a question-answer system such that:
1. the set of declaratives of the system is denumerable and recursive,
2. the set of eformulas of the system is r.e., and

3. each infinite recursive set of declaratives of the system is the set of nominal
ppa’s to an eformula of the system

then the set of w-questions of the system is not r.e. or the answerhood relation R
of the system is not r.e. and hence the system is not effective.
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Again, the situation is similar to that encountered in the case of propo-
sitions.

Yet, are there any reasons which justify us in saying that the assumption
(3) of the above theorem pertains to natural languages? The answer is a con-
ditional “Yes” — see fupkowski & Wisniewski (2011), p. 446. But, leaving
this controversy aside, we can safely state that theorems 1-3 reveal limits of
effectiveness of question-answer sy stems.

9. Final remark. As for effective question-answer systems, the “global”
answerhood relation R is supposed to be r.e. Interestingly enough, one can
get a result stronger than Theorem 2 but based on weaker assumptions. Call
an w-question () effective if the set dQ (of nominal ppa’s to @) is an r.e. set.
The following can be proven (we rephrase the theorem in the conceptual
setting of this essay):

THEOREM 4. Let L be a language such that: (a) among expressions of the
language there are declaratives and eformulas, (b) both declaratives and e-
formulas of L can be coded by natural numbers, (c) the set of declaratives of
L is denumerable and recursive, and (d) the set of all effective w-questions of L
is .e. There exists an infinite family of infinite recursive sets of declaratives of L
which are not sets of nominal ppa’s to any eformula of L.

For the proof and a discussion see Wisniewski & Pogonowski (2010a). For
applications see, e.g., Lupkowski & Wisniewski (2011).
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